Lemma 33.25.10. Let $k$ be a field. Let $X$ be a variety over $k$ which has a $k$-rational point $x$ such that $X$ is smooth at $x$. Then $X$ is geometrically integral over $k$.

**Proof.**
Let $U \subset X$ be the smooth locus of $X$. By assumption $U$ is nonempty and hence dense and scheme theoretically dense. Then $U_{\overline{k}} \subset X_{\overline{k}}$ is dense and scheme theoretically dense as well (some details omitted). Thus it suffices to show that $U$ is geometrically integral. Because $U$ has a $k$-rational point it is geometrically connected by Lemma 33.7.14. On the other hand, $U_{\overline{k}}$ is reduced and normal (Lemma 33.25.4. Since a connected normal Noetherian scheme is integral (Properties, Lemma 28.7.6) the proof is complete.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)