Lemma 10.32.7. Let $A$ be a possibly noncommutative algebra. Let $e \in A$ be an element such that $x = e^2 - e$ is nilpotent. Then there exists an idempotent of the form $e' = e + x(\sum a_{i, j}e^ ix^ j) \in A$ with $a_{i, j} \in \mathbf{Z}$.
Proof. Consider the ring $R_ n = \mathbf{Z}[e]/((e^2 - e)^ n)$. It is clear that if we can prove the result for each $R_ n$ then the lemma follows. In $R_ n$ consider the ideal $I = (e^2 - e)$ and apply Lemma 10.32.6. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: