The Stacks project

Lemma 38.7.3. Let $R \to S$ be a ring map. Let $N$ be an $S$-module. Let $S \to S'$ be a ring map. Assume

  1. $R \to S$ is a local homomorphism of local rings

  2. $S$ is essentially of finite presentation over $R$,

  3. $N$ is of finite presentation over $S$,

  4. $N$ is flat over $R$,

  5. $S \to S'$ is flat, and

  6. the image of $\mathop{\mathrm{Spec}}(S') \to \mathop{\mathrm{Spec}}(S)$ contains all primes $\mathfrak q$ of $S$ lying over $\mathfrak m_ R$ such that $\mathfrak q$ is an associated prime of $N/\mathfrak m_ R N$.

Then $N \to N \otimes _ S S'$ is $R$-universally injective.

Proof. Set $N' = N \otimes _ R S'$. Consider the commutative diagram

\[ \xymatrix{ N \ar[d] \ar[r] & N' \ar[d] \\ \Sigma ^{-1}N \ar[r] & \Sigma ^{-1}N' } \]

where $\Sigma \subset S$ is the set of elements which are not a zerodivisor on $N/\mathfrak m_ R N$. If we can show that the map $N \to \Sigma ^{-1}N'$ is universally injective, then $N \to N'$ is too (see Algebra, Lemma 10.82.10).

By Lemma 38.7.1 the ring $\Sigma ^{-1}S$ is a semi-local ring whose maximal ideals correspond to associated primes of $N/\mathfrak m_ R N$. Hence the image of $\mathop{\mathrm{Spec}}(\Sigma ^{-1}S') \to \mathop{\mathrm{Spec}}(\Sigma ^{-1}S)$ contains all these maximal ideals by assumption. By Algebra, Lemma 10.39.16 the ring map $\Sigma ^{-1}S \to \Sigma ^{-1}S'$ is faithfully flat. Hence $\Sigma ^{-1}N \to \Sigma ^{-1}N'$, which is the map

\[ N \otimes _ S \Sigma ^{-1}S \longrightarrow N \otimes _ S \Sigma ^{-1}S' \]

is universally injective, see Algebra, Lemmas 10.82.11 and 10.82.8. Finally, we apply Lemma 38.7.2 to see that $N \to \Sigma ^{-1}N$ is universally injective. As the composition of universally injective module maps is universally injective (see Algebra, Lemma 10.82.9) we conclude that $N \to \Sigma ^{-1}N'$ is universally injective and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05DG. Beware of the difference between the letter 'O' and the digit '0'.