Lemma 37.24.2. Let $f : X \to Y$ be a finite type morphism of schemes. Assume $Y$ irreducible with generic point $\eta $. If $X_\eta \not= \emptyset $ then there exists a nonempty open $V \subset Y$ such that $X_ V = V \times _ Y X \to V$ is surjective.
Proof. This follows, upon taking affine opens, from Algebra, Lemma 10.30.2. (Of course it also follows from generic flatness.) $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)