The Stacks project

Lemma 38.13.3. Let $S$ be a scheme. Let $f : X \to S$ be locally of finite type. Let $x \in X$ with image $s \in S$. Let $\mathcal{F}$ be a finite type quasi-coherent sheaf on $X$. Let $\mathcal{G}$ be a quasi-coherent sheaf on $S$. If $\mathcal{F}$ is flat at $x$ over $S$, then

\[ x \in \text{WeakAss}_ X(\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G}) \Leftrightarrow s \in \text{WeakAss}_ S(\mathcal{G}) \text{ and } x \in \text{Ass}_{X_ s}(\mathcal{F}_ s). \]

Proof. In this paragraph we reduce to $f$ being of finite presentation. The question is local on $X$ and $S$, hence we may assume $X$ and $S$ are affine. Write $X = \mathop{\mathrm{Spec}}(B)$, $S = \mathop{\mathrm{Spec}}(A)$ and write $B = A[x_1, \ldots , x_ n]/I$. In other words we obtain a closed immersion $i : X \to \mathbf{A}^ n_ S$ over $S$. Denote $t = i(x) \in \mathbf{A}^ n_ S$. Note that $i_*\mathcal{F}$ is a finite type quasi-coherent sheaf on $\mathbf{A}^ n_ S$ which is flat at $t$ over $S$ and note that

\[ i_*(\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G}) = i_*\mathcal{F} \otimes _{\mathcal{O}_{\mathbf{A}^ n_ S}} p^*\mathcal{G} \]

where $p : \mathbf{A}^ n_ S \to S$ is the projection. Note that $t$ is a weakly associated point of $i_*(\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G})$ if and only if $x$ is a weakly associated point of $\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G}$, see Divisors, Lemma 31.6.3. Similarly $x \in \text{Ass}_{X_ s}(\mathcal{F}_ s)$ if and only if $t \in \text{Ass}_{\mathbf{A}^ n_ s}((i_*\mathcal{F})_ s)$ (see Algebra, Lemma 10.63.14). Hence it suffices to prove the lemma in case $X = \mathbf{A}^ n_ S$. Thus we may assume that $X \to S$ is of finite presentation.

In this paragraph we reduce to $\mathcal{F}$ being of finite presentation and flat over $S$. Choose an elementary étale neighbourhood $e : (S', s') \to (S, s)$ and an open $V \subset X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'})$ as in Proposition 38.10.3. Let $x' \in X' = X \times _ S S'$ be the unique point mapping to $x$ and $s'$. Then it suffices to prove the statement for $X' \to S'$, $x'$, $s'$, $(X' \to X)^*\mathcal{F}$, and $e^*\mathcal{G}$, see Lemma 38.2.8. Let $v \in V$ the unique point mapping to $x'$ and let $s' \in \mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'})$ be the closed point. Then $\mathcal{O}_{V, v} = \mathcal{O}_{X', x'}$ and $\mathcal{O}_{\mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'}), s'} = \mathcal{O}_{S', s'}$ and similarly for the stalks of pullbacks of $\mathcal{F}$ and $\mathcal{G}$. Also $V_{s'} \subset X'_{s'}$ is an open subscheme. Since the condition of being a weakly associated point depend only on the stalk of the sheaf, we may replace $X' \to S'$, $x'$, $s'$, $(X' \to X)^*\mathcal{F}$, and $e^*\mathcal{G}$ by $V \to \mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'})$, $v$, $s'$, $(V \to X)^*\mathcal{F}$, and $(\mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'}) \to S)^*\mathcal{G}$. Thus we may assume that $f$ is of finite presentation and $\mathcal{F}$ of finite presentation and flat over $S$.

Assume $f$ is of finite presentation and $\mathcal{F}$ of finite presentation and flat over $S$. After shrinking $X$ and $S$ to affine neighbourhoods of $x$ and $s$, this case is handled by Lemma 38.13.2. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 38.13: Flat finite type modules, Part II

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05IH. Beware of the difference between the letter 'O' and the digit '0'.