The Stacks project

Lemma 38.13.2. Let $R \to S$ be a ring map of finite presentation. Let $N$ be a finitely presented $S$-module which is flat as an $R$-module. Let $M$ be an $R$-module. Let $\mathfrak q$ be a prime of $S$ lying over $\mathfrak p \subset R$. Then

\[ \mathfrak q \in \text{WeakAss}_ S(M \otimes _ R N) \Leftrightarrow \Big( \mathfrak p \in \text{WeakAss}_ R(M) \text{ and } \overline{\mathfrak q} \in \text{Ass}_{\overline{S}}(\overline{N}) \Big) \]

Here $\overline{S} = S \otimes _ R \kappa (\mathfrak p)$, $\overline{\mathfrak q} = \mathfrak q \overline{S}$, and $\overline{N} = N \otimes _ R \kappa (\mathfrak p)$.

Proof. Pick $g \in S$ as in Lemma 38.13.1. Apply Proposition 38.12.4 to the morphism of schemes $\mathop{\mathrm{Spec}}(S_ g) \to \mathop{\mathrm{Spec}}(R)$, the quasi-coherent module associated to $N_ g$, and the points corresponding to the primes $\mathfrak qS_ g$ and $\mathfrak p$. Translating into algebra we obtain a commutative diagram of rings

\[ \xymatrix{ S \ar[r] & S_ g \ar[r] & S' \\ & R \ar[lu] \ar[u] \ar[r] & R' \ar[u] } \quad \quad \xymatrix{ \mathfrak q \ar@{-}[r] \ar@{-}[rd] & \mathfrak qS_ g \ar@{-}[d] \ar@{-}[r] & \mathfrak q' \ar@{-}[d] \\ & \mathfrak p \ar@{-}[r] & \mathfrak p' } \]

endowed with primes as shown, the horizontal arrows are étale, and $N \otimes _ S S'$ is projective as an $R'$-module. Set $N' = N \otimes _ S S'$, $M' = M \otimes _ R R'$, $\overline{S}' = S' \otimes _{R'} \kappa (\mathfrak q')$, $\overline{\mathfrak q}' = \mathfrak q' \overline{S}'$, and

\[ \overline{N}' = N' \otimes _{R'} \kappa (\mathfrak p') = \overline{N} \otimes _{\overline{S}} \overline{S}' \]

By Lemma 38.2.8 we have

\begin{align*} \text{WeakAss}_{S'}(M' \otimes _{R'} N') & = (\mathop{\mathrm{Spec}}(S') \to \mathop{\mathrm{Spec}}(S))^{-1}\text{WeakAss}_ S(M \otimes _ R N) \\ \text{WeakAss}_{R'}(M') & = (\mathop{\mathrm{Spec}}(R') \to \mathop{\mathrm{Spec}}(R))^{-1}\text{WeakAss}_ R(M) \\ \text{Ass}_{\overline{S}'}(\overline{N}') & = (\mathop{\mathrm{Spec}}(\overline{S}') \to \mathop{\mathrm{Spec}}(\overline{S}))^{-1} \text{Ass}_{\overline{S}}(\overline{N}) \end{align*}

Use Algebra, Lemma 10.66.9 for $\overline{N}$ and $\overline{N}'$. In particular we have

\begin{align*} \mathfrak q \in \text{WeakAss}_ S(M \otimes _ R N) & \Leftrightarrow \mathfrak q' \in \text{WeakAss}_{S'}(M' \otimes _{R'} N') \\ \mathfrak p \in \text{WeakAss}_ R(M) & \Leftrightarrow \mathfrak p' \in \text{WeakAss}_{R'}(M') \\ \overline{\mathfrak q} \in \text{Ass}_{\overline{S}}(\overline{N}) & \Leftrightarrow \overline{\mathfrak q}' \in \text{WeakAss}_{\overline{S}'}(\overline{N}') \end{align*}

Our careful choice of $g$ and the formula for $\text{Ass}_{\overline{S}'}(\overline{N}')$ above shows that

38.13.2.1
\begin{equation} \label{flat-equation-key-observation} \text{if }\mathfrak r' \in \text{Ass}_{\overline{S}'}(\overline{N}') \text{ lies over }\mathfrak r \subset \overline{S}\text{ then } \mathfrak r \subset \overline{\mathfrak q} \end{equation}

This will be a key observation later in the proof. We will use the characterization of weakly associated primes given in Algebra, Lemma 10.66.2 without further mention.

Suppose that $\overline{\mathfrak q} \not\in \text{Ass}_{\overline{S}}(\overline{N})$. Then $\overline{\mathfrak q}' \not\in \text{Ass}_{\overline{S}'}(\overline{N}')$. By Algebra, Lemmas 10.63.9, 10.63.5, and 10.15.2 there exists an element $\overline{a}' \in \overline{\mathfrak q}'$ which is not a zerodivisor on $\overline{N}'$. After replacing $\overline{a}'$ by $\lambda \overline{a}'$ for some nonzero $\lambda \in \kappa (\mathfrak p)$ we can find $a' \in \mathfrak q'$ mapping to $\overline{a}'$. By Lemma 38.7.6 the map $a' : N'_{\mathfrak p'} \to N'_{\mathfrak p'}$ is $R'_{\mathfrak p'}$-universally injective. In particular we see that $a' : M' \otimes _{R'} N' \to M' \otimes _{R'} N'$ is injective after localizing at $\mathfrak p'$ and hence after localizing at $\mathfrak q'$. Clearly this implies that $\mathfrak q' \not\in \text{WeakAss}_{S'}(M' \otimes _{R'} N')$. We conclude that $\mathfrak q \in \text{WeakAss}_ S(M \otimes _ R N)$ implies $\overline{\mathfrak q} \in \text{Ass}_{\overline{S}}(\overline{N})$.

Assume $\mathfrak q \in \text{WeakAss}_ S(M \otimes _ R N)$. We want to show $\mathfrak p \in \text{WeakAss}_ S(M)$. Let $z \in M \otimes _ R N$ be an element such that $\mathfrak q$ is minimal over $J = \text{Ann}_ S(z)$. Let $f_ i \in \mathfrak p$, $i \in I$ be a set of generators of the ideal $\mathfrak p$. Since $\mathfrak q$ lies over $\mathfrak p$, for every $i$ we can choose an $n_ i \geq 1$ and $g_ i \in S$, $g_ i \not\in \mathfrak q$ with $g_ i f_ i^{n_ i} \in J$, i.e., $g_ i f_ i^{n_ i} z = 0$. Let $z' \in (M' \otimes _{R'} N')_{\mathfrak p'}$ be the image of $z$. Observe that $z'$ is nonzero because $z$ has nonzero image in $(M \otimes _ R N)_\mathfrak q$ and because $S_\mathfrak q \to S'_{\mathfrak q'}$ is faithfully flat. We claim that $f_ i^{n_ i} z' = 0$.

Proof of the claim: Let $g'_ i \in S'$ be the image of $g_ i$. By the key observation (38.13.2.1) we find that the image $\overline{g}'_ i \in \overline{S}'$ is not contained in $\mathfrak r'$ for any $\mathfrak r' \in \text{Ass}_{\overline{S}'}(\overline{N})$. Hence by Lemma 38.7.6 we see that $g'_ i : N'_{\mathfrak p'} \to N'_{\mathfrak p'}$ is $R'_{\mathfrak p'}$-universally injective. In particular we see that $g'_ i : M' \otimes _{R'} N' \to M' \otimes _{R'} N'$ is injective after localizating at $\mathfrak p'$. The claim follows because $g_ i f_ i^{n_ i} z' = 0$.

Our claim shows that the annihilator of $z'$ in $R'_{\mathfrak p'}$ contains the elements $f_ i^{n_ i}$. As $R \to R'$ is étale we have $\mathfrak p'R'_{\mathfrak p'} = \mathfrak pR'_{\mathfrak p'}$ by Algebra, Lemma 10.143.5. Hence the annihilator of $z'$ in $R'_{\mathfrak p'}$ has radical equal to $\mathfrak p' R_{\mathfrak p'}$ (here we use $z'$ is not zero). On the other hand

\[ z' \in (M' \otimes _{R'} N')_{\mathfrak p'} = M'_{\mathfrak p'} \otimes _{R'_{\mathfrak p'}} N'_{\mathfrak p'} \]

The module $N'_{\mathfrak p'}$ is projective over the local ring $R'_{\mathfrak p'}$ and hence free (Algebra, Theorem 10.85.4). Thus we can find a finite free direct summand $F' \subset N'_{\mathfrak p'}$ such that $z' \in M'_{\mathfrak p'} \otimes _{R'_{\mathfrak p'}} F'$. If $F'$ has rank $n$, then we deduce that $\mathfrak p' R'_{\mathfrak p'} \in \text{WeakAss}_{R'_{\mathfrak p'}}({M'_{\mathfrak p'}}^{\oplus n})$. This implies $\mathfrak p'R'_{\mathfrak p'} \in \text{WeakAss}(M'_{\mathfrak p'})$ for example by Algebra, Lemma 10.66.4. Then $\mathfrak p' \in \text{WeakAss}_{R'}(M')$ which in turn gives $\mathfrak p \in \text{WeakAss}_ R(M)$. This finishes the proof of the implication “$\Rightarrow $” of the equivalence of the lemma.

Assume that $\mathfrak p \in \text{WeakAss}_ R(M)$ and $\overline{\mathfrak q} \in \text{Ass}_{\overline{S}}(\overline{N})$. We want to show that $\mathfrak q$ is weakly associated to $M \otimes _ R N$. Note that $\overline{\mathfrak q}'$ is a maximal element of $\text{Ass}_{\overline{S}'}(\overline{N}')$. This is a consequence of (38.13.2.1) and the fact that there are no inclusions among the primes of $\overline{S}'$ lying over $\overline{\mathfrak q}$ (as fibres of étale morphisms are discrete Morphisms, Lemma 29.36.7). Thus, after replacing $R, S, \mathfrak p, \mathfrak q, M, N$ by $R', S', \mathfrak p', \mathfrak q', M', N'$ we may assume, in addition to the assumptions of the lemma, that

  1. $\mathfrak p \in \text{WeakAss}_ R(M)$,

  2. $\overline{\mathfrak q} \in \text{Ass}_{\overline{S}}(\overline{N})$,

  3. $N$ is projective as an $R$-module, and

  4. $\overline{\mathfrak q}$ is maximal in $\text{Ass}_{\overline{S}}(\overline{N})$.

There is one more reduction, namely, we may replace $R, S, M, N$ by their localizations at $\mathfrak p$. This leads to one more condition, namely,

  1. $R$ is a local ring with maximal ideal $\mathfrak p$.

We will finish by showing that (1) – (5) imply $\mathfrak q \in \text{WeakAss}(M \otimes _ R N)$.

Since $R$ is local and $\mathfrak p \in \text{WeakAss}_ R(M)$ we can pick a $y \in M$ whose annihilator $I$ has radical equal to $\mathfrak p$. Write $\overline{\mathfrak q} = (\overline{g}_1, \ldots , \overline{g}_ n)$ for some $\overline{g}_ i \in \overline{S}$. Choose $g_ i \in S$ mapping to $\overline{g}_ i$. Then $\mathfrak q = \mathfrak pS + g_1S + \ldots + g_ nS$. Consider the map

\[ \Psi : N/IN \longrightarrow (N/IN)^{\oplus n}, \quad z \longmapsto (g_1z, \ldots , g_ nz). \]

This is a homomorphism of projective $R/I$-modules. The local ring $R/I$ is auto-associated (More on Algebra, Definition 15.15.1) as $\mathfrak p/I$ is locally nilpotent. The map $\Psi \otimes \kappa (\mathfrak p)$ is not injective, because $\overline{\mathfrak q} \in \text{Ass}_{\overline{S}}(\overline{N})$. Hence More on Algebra, Lemma 15.15.4 implies $\Psi $ is not injective. Pick $z \in N/IN$ nonzero in the kernel of $\Psi $. The annihilator $J = \text{Ann}_ S(z)$ contains $IS$ and $g_ i$ by construction. Thus $\sqrt{J} \subset S$ contains $\mathfrak q$. Let $\mathfrak s \subset S$ be a prime minimal over $J$. Then $\mathfrak q \subset \mathfrak s$, $\mathfrak s$ lies over $\mathfrak p$, and $\mathfrak s \in \text{WeakAss}_ S(N/IN)$. The last fact by definition of weakly associated primes. Apply the “$\Rightarrow $” part of the lemma (which we've already proven) to the ring map $R \to S$ and the modules $R/I$ and $N$ to conclude that $\overline{\mathfrak s} \in \text{Ass}_{\overline{S}}(\overline{N})$. Since $\overline{\mathfrak q} \subset \overline{\mathfrak s}$ the maximality of $\overline{\mathfrak q}$, see condition (4) above, implies that $\overline{\mathfrak q} = \overline{\mathfrak s}$. This shows that $\mathfrak q = \mathfrak s$ and we conlude what we want. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 38.13: Flat finite type modules, Part II

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05IG. Beware of the difference between the letter 'O' and the digit '0'.