The Stacks project

Lemma 38.15.8. In Situation 38.15.1 the following are equivalent

  1. there exists an impurity $(S^ h \to S, s' \leadsto s, \xi )$ of $\mathcal{F}$ above $s$ where $S^ h$ is the henselization of $S$ at $s$,

  2. there exists an impurity $(T \to S, t' \leadsto t, \xi )$ of $\mathcal{F}$ above $s$ such that $(T, t) \to (S, s)$ is an elementary étale neighbourhood, and

  3. there exists an impurity $(T \to S, t' \leadsto t, \xi )$ of $\mathcal{F}$ above $s$ such that $T \to S$ is quasi-finite at $t$.

Proof. As an étale morphism is locally quasi-finite it is clear that (2) implies (3). We have seen that (3) implies (2) in Lemma 38.15.5. We have seen that (1) implies (2) in Lemma 38.15.7. Finally, if $(T \to S, t' \leadsto t, \xi )$ is an impurity of $\mathcal{F}$ above $s$ such that $(T, t) \to (S, s)$ is an elementary étale neighbourhood, then we can choose a factorization $S^ h \to T \to S$ of the structure morphism $S^ h \to S$. Choose any point $s' \in S^ h$ mapping to $t'$ and choose any $\xi ' \in X_{s'}$ mapping to $\xi \in X_{t'}$. Then $(S^ h \to S, s' \leadsto s, \xi ')$ is an impurity of $\mathcal{F}$ above $s$. We omit the details. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05J3. Beware of the difference between the letter 'O' and the digit '0'.