Lemma 38.17.3. Let $f : X \to S$ be a finite type, flat morphism of schemes with geometrically integral fibres. Then $X$ is universally pure over $S$.
Proof. Let $\xi \in X$ with $s' = f(\xi )$ and $s' \leadsto s$ a specialization of $S$. If $\xi $ is an associated point of $X_{s'}$, then $\xi $ is the unique generic point because $X_{s'}$ is an integral scheme. Let $\xi _0$ be the unique generic point of $X_ s$. As $X \to S$ is flat we can lift $s' \leadsto s$ to a specialization $\xi ' \leadsto \xi _0$ in $X$, see Morphisms, Lemma 29.25.9. The $\xi \leadsto \xi '$ because $\xi $ is the generic point of $X_{s'}$ hence $\xi \leadsto \xi _0$. This means that $(\text{id}_ S, s' \to s, \xi )$ is not an impurity of $\mathcal{O}_ X$ above $s$. Since the assumption that $f$ is finite type, flat with geometrically integral fibres is preserved under base change, we see that there doesn't exist an impurity after any base change. In this way we see that $X$ is universally $S$-pure. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)