Lemma 38.17.4. Let $f : X \to S$ be a finite type, affine morphism of schemes. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module such that $f_*\mathcal{F}$ is locally projective on $S$, see Properties, Definition 28.21.1. Then $\mathcal{F}$ is universally pure over $S$.
Proof. After reducing to the case where $S$ is the spectrum of a henselian local ring this follows from Lemma 38.14.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)