The Stacks project

Example 10.28.5. Let us show that the family of principal ideals of a ring $R$ is an Oka family. Indeed, suppose $I \subset R$ is an ideal, $a \in R$, and $(I, a)$ and $(I : a)$ are principal. Note that $(I : a) = (I : (I, a))$. Setting $J = (I, a)$, we find that $J$ is principal and $(I : J)$ is too. By Lemma 10.28.1 we have $I = J (I : J)$. Thus we find in our situation that since $J = (I, a)$ and $(I : J)$ are principal, $I$ is principal.

Comments (0)

There are also:

  • 6 comment(s) on Section 10.28: A meta-observation about prime ideals

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05KC. Beware of the difference between the letter 'O' and the digit '0'.