Example 10.28.6. Let $R$ be a ring. Let $\kappa $ be an infinite cardinal. The family of ideals which can be generated by at most $\kappa $ elements is an Oka family. The argument is analogous to the argument in Example 10.28.4 and is omitted.
Example 10.28.6. Let $R$ be a ring. Let $\kappa $ be an infinite cardinal. The family of ideals which can be generated by at most $\kappa $ elements is an Oka family. The argument is analogous to the argument in Example 10.28.4 and is omitted.
Comments (0)
There are also: