The Stacks project

Lemma 38.12.9. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $x \in X$ with image $s \in S$. Assume that

  1. $f$ is locally of finite type,

  2. $\mathcal{F}$ is of finite type, and

  3. $\mathcal{F}$ is flat at $x$ over $S$.

Then there exists an elementary étale neighbourhood $(S', s') \to (S, s)$ and a commutative diagram of pointed schemes

\[ \xymatrix{ (X, x) \ar[d] & (X', x') \ar[l]^ g \ar[d] \\ (S, s) & (\mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'}), s') \ar[l] } \]

such that $X' \to X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'})$ is étale, $\kappa (x) = \kappa (x')$, the scheme $X'$ is affine, and such that $\Gamma (X', g^*\mathcal{F})$ is a free $\mathcal{O}_{S', s'}$-module.

Proof. (The only difference with Lemma 38.12.8 is that we do not assume $f$ is of finite presentation.) The problem is local on $X$ and $S$. Hence we may assume $X$ and $S$ are affine, say $X = \mathop{\mathrm{Spec}}(B)$ and $S = \mathop{\mathrm{Spec}}(A)$. Since $B$ is a finite type $A$-algebra we can find a surjection $A[x_1, \ldots , x_ n] \to B$. In other words, we can choose a closed immersion $i : X \to \mathbf{A}^ n_ S$. Set $t = i(x)$ and $\mathcal{G} = i_*\mathcal{F}$. Note that $\mathcal{G}_ t \cong \mathcal{F}_ x$ are $\mathcal{O}_{S, s}$-modules. Hence $\mathcal{G}$ is flat over $S$ at $t$. We apply Lemma 38.12.8 to the morphism $\mathbf{A}^ n_ S \to S$, the point $t$, and the sheaf $\mathcal{G}$. Thus we can find an elementary étale neighbourhood $(S', s') \to (S, s)$ and a commutative diagram of pointed schemes

\[ \xymatrix{ (\mathbf{A}^ n_ S, t) \ar[d] & (Y, y) \ar[l]^ h \ar[d] \\ (S, s) & (\mathop{\mathrm{Spec}}(\mathcal{O}_{S', s'}), s') \ar[l] } \]

such that $Y \to \mathbf{A}^ n_{\mathcal{O}_{S', s'}}$ is étale, $\kappa (t) = \kappa (y)$, the scheme $Y$ is affine, and such that $\Gamma (Y, h^*\mathcal{G})$ is a projective $\mathcal{O}_{S', s'}$-module. Then a solution to the original problem is given by the closed subscheme $X' = Y \times _{\mathbf{A}^ n_ S} X$ of $Y$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05KZ. Beware of the difference between the letter 'O' and the digit '0'.