Lemma 63.3.6. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$ be a representable transformation of functors. Then $\Delta _{F/G} : F \to F \times _ G F$ is representable.

**Proof.**
Let $U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$. Let $\xi = (\xi _1, \xi _2) \in (F \times _ G F)(U)$. Set $\xi ' = a(\xi _1) = a(\xi _2) \in G(U)$. By assumption there exist a scheme $V$ and a morphism $V \to U$ representing the fibre product $h_ U \times _{\xi ', G} F$. In particular, the elements $\xi _1, \xi _2$ give morphisms $f_1, f_2 : U \to V$ over $U$. Because $V$ represents the fibre product $h_ U \times _{\xi ', G} F$ and because $\xi ' = a \circ \xi _1 = a \circ \xi _2$ we see that if $g : U' \to U$ is a morphism then

In other words, we see that $h_ U \times _{\xi , F \times _ G F} F$ is represented by $V \times _{\Delta , V \times V, (f_1, f_2)} U$ which is a scheme. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: