The Stacks project

65.3 Representable morphisms of presheaves

Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$ be a representable transformation of functors, see Categories, Definition 4.8.2. This means that for every $U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$ and any $\xi \in G(U)$ the fiber product $h_ U \times _{\xi , G} F$ is representable. Choose a representing object $V_\xi $ and an isomorphism $h_{V_\xi } \to h_ U \times _ G F$. By the Yoneda lemma, see Categories, Lemma 4.3.5, the projection $h_{V_\xi } \to h_ U \times _ G F \to h_ U$ comes from a unique morphism of schemes $a_\xi : V_\xi \to U$. Suggestively we could represent this by the diagram

\[ \xymatrix{ V_\xi \ar@{~>}[r] \ar[d]_{a_\xi } & h_{V_\xi } \ar[d] \ar[r] & F \ar[d]^ a \\ U \ar@{~>}[r] & h_ U \ar[r]^\xi & G } \]

where the squiggly arrows represent the Yoneda embedding. Here are some lemmas about this notion that work in great generality.

Lemma 65.3.1. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$ and let $X$, $Y$ be objects of $(\mathit{Sch}/S)_{fppf}$. Let $f : X \to Y$ be a morphism of schemes. Then

\[ h_ f : h_ X \longrightarrow h_ Y \]

is a representable transformation of functors.

Proof. This is formal and relies only on the fact that the category $(\mathit{Sch}/S)_{fppf}$ has fibre products. $\square$

Lemma 65.3.2. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G, H : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$, $b : G \to H$ be representable transformations of functors. Then

\[ b \circ a : F \longrightarrow H \]

is a representable transformation of functors.

Proof. This is entirely formal and works in any category. $\square$

Lemma 65.3.3. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G, H : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$ be a representable transformation of functors. Let $b : H \to G$ be any transformation of functors. Consider the fibre product diagram

\[ \xymatrix{ H \times _{b, G, a} F \ar[r]_-{b'} \ar[d]_{a'} & F \ar[d]^ a \\ H \ar[r]^ b & G } \]

Then the base change $a'$ is a representable transformation of functors.

Proof. This is entirely formal and works in any category. $\square$

Lemma 65.3.4. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F_ i, G_ i : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$, $i = 1, 2$. Let $a_ i : F_ i \to G_ i$, $i = 1, 2$ be representable transformations of functors. Then

\[ a_1 \times a_2 : F_1 \times F_2 \longrightarrow G_1 \times G_2 \]

is a representable transformation of functors.

Proof. Write $a_1 \times a_2$ as the composition $F_1 \times F_2 \to G_1 \times F_2 \to G_1 \times G_2$. The first arrow is the base change of $a_1$ by the map $G_1 \times F_2 \to G_1$, and the second arrow is the base change of $a_2$ by the map $G_1 \times G_2 \to G_2$. Hence this lemma is a formal consequence of Lemmas 65.3.2 and 65.3.3. $\square$

Lemma 65.3.5. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$ be a representable transformation of functors. If $G$ is a sheaf, then so is $F$.

Proof. Let $\{ \varphi _ i : T_ i \to T\} $ be a covering of the site $(\mathit{Sch}/S)_{fppf}$. Let $s_ i \in F(T_ i)$ which satisfy the sheaf condition. Then $\sigma _ i = a(s_ i) \in G(T_ i)$ satisfy the sheaf condition also. Hence there exists a unique $\sigma \in G(T)$ such that $\sigma _ i = \sigma |_{T_ i}$. By assumption $F' = h_ T \times _{\sigma , G, a} F$ is a representable presheaf and hence (see remarks in Section 65.2) a sheaf. Note that $(\varphi _ i, s_ i) \in F'(T_ i)$ satisfy the sheaf condition also, and hence come from some unique $(\text{id}_ T, s) \in F'(T)$. Clearly $s$ is the section of $F$ we are looking for. $\square$

Lemma 65.3.6. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $a : F \to G$ be a representable transformation of functors. Then $\Delta _{F/G} : F \to F \times _ G F$ is representable.

Proof. Let $U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$. Let $\xi = (\xi _1, \xi _2) \in (F \times _ G F)(U)$. Set $\xi ' = a(\xi _1) = a(\xi _2) \in G(U)$. By assumption there exist a scheme $V$ and a morphism $V \to U$ representing the fibre product $h_ U \times _{\xi ', G} F$. In particular, the elements $\xi _1, \xi _2$ give morphisms $f_1, f_2 : U \to V$ over $U$. Because $V$ represents the fibre product $h_ U \times _{\xi ', G} F$ and because $\xi ' = a \circ \xi _1 = a \circ \xi _2$ we see that if $g : U' \to U$ is a morphism then

\[ g^*\xi _1 = g^*\xi _2 \Leftrightarrow f_1 \circ g = f_2 \circ g. \]

In other words, we see that $h_ U \times _{\xi , F \times _ G F} F$ is represented by $V \times _{\Delta , V \times V, (f_1, f_2)} U$ which is a scheme. $\square$


Comments (2)

Comment #5432 by P. Licht on

There is a typo in Lemma 02W9: X,Y,f should live in the category of fppf schemes over S.

Comment #5658 by on

Thanks and fixed here. If you want to be listed as a contributor, please comment with first name and last name.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 025U. Beware of the difference between the letter 'O' and the digit '0'.