Lemma 17.17.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. A filtered colimit of flat $\mathcal{O}_ X$-modules is flat. A direct sum of flat $\mathcal{O}_ X$-modules is flat.
Proof. This follows from Lemma 17.16.5, Lemma 17.16.1, Algebra, Lemma 10.8.8, and the fact that we can check exactness at stalks. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)