Lemma 17.17.9. Let (X, \mathcal{O}_ X) be a ringed space. Let
\ldots \to \mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F}_0 \to \mathcal{Q} \to 0
be an exact complex of \mathcal{O}_ X-modules. If \mathcal{Q} and all \mathcal{F}_ i are flat \mathcal{O}_ X-modules, then for any \mathcal{O}_ X-module \mathcal{G} the complex
\ldots \to \mathcal{F}_2 \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{F}_1 \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{F}_0 \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{Q} \otimes _{\mathcal{O}_ X} \mathcal{G} \to 0
is exact also.
Comments (0)