Lemma 17.17.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let
be a short exact sequence of $\mathcal{O}_ X$-modules. Assume $\mathcal{F}$ is flat. Then for any $\mathcal{O}_ X$-module $\mathcal{G}$ the sequence
is exact.
Lemma 17.17.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let
be a short exact sequence of $\mathcal{O}_ X$-modules. Assume $\mathcal{F}$ is flat. Then for any $\mathcal{O}_ X$-module $\mathcal{G}$ the sequence
is exact.
Proof. Using that $\mathcal{F}_ x$ is a flat $\mathcal{O}_{X, x}$-module for every $x \in X$ and that exactness can be checked on stalks, this follows from Algebra, Lemma 10.39.12. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)