Lemma 17.17.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let

be a short exact sequence of $\mathcal{O}_ X$-modules. Assume $\mathcal{F}$ is flat. Then for any $\mathcal{O}_ X$-module $\mathcal{G}$ the sequence

is exact.

Lemma 17.17.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let

\[ 0 \to \mathcal{F}'' \to \mathcal{F}' \to \mathcal{F} \to 0 \]

be a short exact sequence of $\mathcal{O}_ X$-modules. Assume $\mathcal{F}$ is flat. Then for any $\mathcal{O}_ X$-module $\mathcal{G}$ the sequence

\[ 0 \to \mathcal{F}'' \otimes _\mathcal {O} \mathcal{G} \to \mathcal{F}' \otimes _\mathcal {O} \mathcal{G} \to \mathcal{F} \otimes _\mathcal {O} \mathcal{G} \to 0 \]

is exact.

**Proof.**
Using that $\mathcal{F}_ x$ is a flat $\mathcal{O}_{X, x}$-module for every $x \in X$ and that exactness can be checked on stalks, this follows from Algebra, Lemma 10.39.12.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)