Lemma 17.17.6. Let (X, \mathcal{O}_ X) be a ringed space.
Any sheaf of \mathcal{O}_ X-modules is a quotient of a direct sum \bigoplus j_{U_ i!}\mathcal{O}_{U_ i}.
Any \mathcal{O}_ X-module is a quotient of a flat \mathcal{O}_ X-module.
Lemma 17.17.6. Let (X, \mathcal{O}_ X) be a ringed space.
Any sheaf of \mathcal{O}_ X-modules is a quotient of a direct sum \bigoplus j_{U_ i!}\mathcal{O}_{U_ i}.
Any \mathcal{O}_ X-module is a quotient of a flat \mathcal{O}_ X-module.
Proof. Let \mathcal{F} be an \mathcal{O}_ X-module. For every open U \subset X and every s \in \mathcal{F}(U) we get a morphism j_{U!}\mathcal{O}_ U \to \mathcal{F}, namely the adjoint to the morphism \mathcal{O}_ U \to \mathcal{F}|_ U, 1 \mapsto s. Clearly the map
is surjective, and the source is flat by combining Lemmas 17.17.4 and 17.17.5. \square
Comments (0)