Lemma 17.17.6. Let $(X, \mathcal{O}_ X)$ be a ringed space.
Any sheaf of $\mathcal{O}_ X$-modules is a quotient of a direct sum $\bigoplus j_{U_ i!}\mathcal{O}_{U_ i}$.
Any $\mathcal{O}_ X$-module is a quotient of a flat $\mathcal{O}_ X$-module.
Lemma 17.17.6. Let $(X, \mathcal{O}_ X)$ be a ringed space.
Any sheaf of $\mathcal{O}_ X$-modules is a quotient of a direct sum $\bigoplus j_{U_ i!}\mathcal{O}_{U_ i}$.
Any $\mathcal{O}_ X$-module is a quotient of a flat $\mathcal{O}_ X$-module.
Proof. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. For every open $U \subset X$ and every $s \in \mathcal{F}(U)$ we get a morphism $j_{U!}\mathcal{O}_ U \to \mathcal{F}$, namely the adjoint to the morphism $\mathcal{O}_ U \to \mathcal{F}|_ U$, $1 \mapsto s$. Clearly the map
is surjective, and the source is flat by combining Lemmas 17.17.4 and 17.17.5. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)