Lemma 12.19.10. Let $\mathcal{A}$ be an abelian category. Let $A, B, C \in \text{Fil}(\mathcal{A})$. Let $f : A \to B$ and $g : A \to C$ be morphisms. Then there exists a pushout

$\xymatrix{ A \ar[r]_ f \ar[d]_ g & B \ar[d]^{g'} \\ C \ar[r]^{f'} & C \amalg _ A B }$

in $\text{Fil}(\mathcal{A})$. If $f$ is strict, so is $f'$.

Proof. Set $C \amalg _ A B$ equal to $\mathop{\mathrm{Coker}}((1, -1) : A \to C \oplus B)$ in $\text{Fil}(\mathcal{A})$. This cokernel exists, by Lemma 12.19.2. It is a pushout, see Example 12.5.6. Note that $F^ p(C \amalg _ A B)$ is the image of $F^ pC \oplus F^ pB$. Hence

$(f')^{-1}(F^ p(C \amalg _ A B)) = g(f^{-1}(F^ pB))) + F^ pC$

Whence the last statement. $\square$

Comment #3762 by Owen B on

just a typo: $\textstyle\prod_A$ appears twice in place of $\coprod_A$

Comment #3763 by Owen B on

sorry, I meant $\times_A$ appears twice in place of $\coprod_A$

There are also:

• 6 comment(s) on Section 12.19: Filtrations

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).