Lemma 12.19.11. Let $\mathcal{A}$ be an abelian category. Let $A, B, C \in \text{Fil}(\mathcal{A})$. Let $f : B \to A$ and $g : C \to A$ be morphisms. Then there exists a fibre product
\[ \xymatrix{ B \times _ A C \ar[r]_{g'} \ar[d]_{f'} & B \ar[d]^ f \\ C \ar[r]^ g & A } \]
in $\text{Fil}(\mathcal{A})$. If $f$ is strict, so is $f'$.
Comments (2)
Comment #2352 by MAO Zhouhang on
Comment #2419 by Johan on
There are also: