Situation 13.15.1. Here $F : \mathcal{A} \to \mathcal{B}$ is an additive functor between abelian categories. This induces exact functors
See Lemma 13.10.6. We also denote $F$ the composition $K(\mathcal{A}) \to D(\mathcal{B})$, $K^{+}(\mathcal{A}) \to D^{+}(\mathcal{B})$, and $K^{-}(\mathcal{A}) \to D^-(\mathcal{B})$ of $F$ with the localization functor $K(\mathcal{B}) \to D(\mathcal{B})$, etc. This situation leads to four derived functors we will consider in the following.
The right derived functor of $F : K(\mathcal{A}) \to D(\mathcal{B})$ relative to the multiplicative system $\text{Qis}(\mathcal{A})$.
The right derived functor of $F : K^{+}(\mathcal{A}) \to D^{+}(\mathcal{B})$ relative to the multiplicative system $\text{Qis}^{+}(\mathcal{A})$.
The left derived functor of $F : K(\mathcal{A}) \to D(\mathcal{B})$ relative to the multiplicative system $\text{Qis}(\mathcal{A})$.
The left derived functor of $F : K^{-}(\mathcal{A}) \to D^{-}(\mathcal{B})$ relative to the multiplicative system $\text{Qis}^-(\mathcal{A})$.
Each of these cases is an example of Situation 13.14.1.
Comments (2)
Comment #5073 by Remy on
Comment #5286 by Johan on
There are also: