Situation 13.15.1. Here $F : \mathcal{A} \to \mathcal{B}$ is an additive functor between abelian categories. This induces exact functors

$F : K(\mathcal{A}) \to K(\mathcal{B}), \quad K^{+}(\mathcal{A}) \to K^{+}(\mathcal{B}), \quad K^{-}(\mathcal{A}) \to K^{-}(\mathcal{B}).$

See Lemma 13.10.6. We also denote $F$ the composition $K(\mathcal{A}) \to D(\mathcal{B})$, $K^{+}(\mathcal{A}) \to D^{+}(\mathcal{B})$, and $K^{-}(\mathcal{A}) \to D^-(\mathcal{B})$ of $F$ with the localization functor $K(\mathcal{B}) \to D(\mathcal{B})$, etc. This situation leads to four derived functors we will consider in the following.

1. The right derived functor of $F : K(\mathcal{A}) \to D(\mathcal{B})$ relative to the multiplicative system $\text{Qis}(\mathcal{A})$.

2. The right derived functor of $F : K^{+}(\mathcal{A}) \to D^{+}(\mathcal{B})$ relative to the multiplicative system $\text{Qis}^{+}(\mathcal{A})$.

3. The left derived functor of $F : K(\mathcal{A}) \to D(\mathcal{B})$ relative to the multiplicative system $\text{Qis}(\mathcal{A})$.

4. The left derived functor of $F : K^{-}(\mathcal{A}) \to D^{-}(\mathcal{B})$ relative to the multiplicative system $\text{Qis}^-(\mathcal{A})$.

Each of these cases is an example of Situation 13.14.1.

## Comments (2)

There are also:

• 7 comment(s) on Section 13.15: Derived functors on derived categories

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05T4. Beware of the difference between the letter 'O' and the digit '0'.