Lemma 13.18.8. Let $\mathcal{A}$ be an abelian category. Let $I^\bullet $ be bounded below complex consisting of injective objects. Let $L^\bullet \in K(\mathcal{A})$. Then

**Proof.**
Let $a$ be an element of the right hand side. We may represent $a = \gamma \alpha ^{-1}$ where $\alpha : K^\bullet \to L^\bullet $ is a quasi-isomorphism and $\gamma : K^\bullet \to I^\bullet $ is a map of complexes. By Lemma 13.18.6 we can find a morphism $\beta : L^\bullet \to I^\bullet $ such that $\beta \circ \alpha $ is homotopic to $\gamma $. This proves that the map is surjective. Let $b$ be an element of the left hand side which maps to zero in the right hand side. Then $b$ is the homotopy class of a morphism $\beta : L^\bullet \to I^\bullet $ such that there exists a quasi-isomorphism $\alpha : K^\bullet \to L^\bullet $ with $\beta \circ \alpha $ homotopic to zero. Then Lemma 13.18.7 shows that $\beta $ is homotopic to zero also, i.e., $b = 0$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #8417 by Elías Guisado on

Comment #8828 by Elías Guisado on

There are also: