Lemma 13.18.8. Let $\mathcal{A}$ be an abelian category. Let $I^\bullet$ be bounded below complex consisting of injective objects. Let $L^\bullet \in K(\mathcal{A})$. Then

$\mathop{\mathrm{Mor}}\nolimits _{K(\mathcal{A})}(L^\bullet , I^\bullet ) = \mathop{\mathrm{Mor}}\nolimits _{D(\mathcal{A})}(L^\bullet , I^\bullet ).$

Proof. Let $a$ be an element of the right hand side. We may represent $a = \gamma \alpha ^{-1}$ where $\alpha : K^\bullet \to L^\bullet$ is a quasi-isomorphism and $\gamma : K^\bullet \to I^\bullet$ is a map of complexes. By Lemma 13.18.6 we can find a morphism $\beta : L^\bullet \to I^\bullet$ such that $\beta \circ \alpha$ is homotopic to $\gamma$. This proves that the map is surjective. Let $b$ be an element of the left hand side which maps to zero in the right hand side. Then $b$ is the homotopy class of a morphism $\beta : L^\bullet \to I^\bullet$ such that there exists a quasi-isomorphism $\alpha : K^\bullet \to L^\bullet$ with $\beta \circ \alpha$ homotopic to zero. Then Lemma 13.18.7 shows that $\beta$ is homotopic to zero also, i.e., $b = 0$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).