The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

13.18 Injective resolutions

In this section we prove some lemmas regarding the existence of injective resolutions in abelian categories having enough injectives.

Definition 13.18.1. Let $\mathcal{A}$ be an abelian category. Let $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$. An injective resolution of $A$ is a complex $I^\bullet $ together with a map $A \to I^0$ such that:

  1. We have $I^ n = 0$ for $n < 0$.

  2. Each $I^ n$ is an injective object of $\mathcal{A}$.

  3. The map $A \to I^0$ is an isomorphism onto $\mathop{\mathrm{Ker}}(d^0)$.

  4. We have $H^ i(I^\bullet ) = 0$ for $i > 0$.

Hence $A[0] \to I^\bullet $ is a quasi-isomorphism. In other words the complex

\[ \ldots \to 0 \to A \to I^0 \to I^1 \to \ldots \]

is acyclic. Let $K^\bullet $ be a complex in $\mathcal{A}$. An injective resolution of $K^\bullet $ is a complex $I^\bullet $ together with a map $\alpha : K^\bullet \to I^\bullet $ of complexes such that

  1. We have $I^ n = 0$ for $n \ll 0$, i.e., $I^\bullet $ is bounded below.

  2. Each $I^ n$ is an injective object of $\mathcal{A}$.

  3. The map $\alpha : K^\bullet \to I^\bullet $ is a quasi-isomorphism.

In other words an injective resolution $K^\bullet \to I^\bullet $ gives rise to a diagram

\[ \xymatrix{ \ldots \ar[r] & K^{n - 1} \ar[d] \ar[r] & K^ n \ar[d] \ar[r] & K^{n + 1} \ar[d] \ar[r] & \ldots \\ \ldots \ar[r] & I^{n - 1} \ar[r] & I^ n \ar[r] & I^{n + 1} \ar[r] & \ldots } \]

which induces an isomorphism on cohomology objects in each degree. An injective resolution of an object $A$ of $\mathcal{A}$ is almost the same thing as an injective resolution of the complex $A[0]$.

Lemma 13.18.2. Let $\mathcal{A}$ be an abelian category. Let $K^\bullet $ be a complex of $\mathcal{A}$.

  1. If $K^\bullet $ has an injective resolution then $H^ n(K^\bullet ) = 0$ for $n \ll 0$.

  2. If $H^ n(K^\bullet ) = 0$ for all $n \ll 0$ then there exists a quasi-isomorphism $K^\bullet \to L^\bullet $ with $L^\bullet $ bounded below.

Proof. Omitted. For the second statement use $L^\bullet = \tau _{\geq n}K^\bullet $ for some $n \ll 0$. See Homology, Section 12.14 for the definition of the truncation $\tau _{\geq n}$. $\square$

Lemma 13.18.3. Let $\mathcal{A}$ be an abelian category. Assume $\mathcal{A}$ has enough injectives.

  1. Any object of $\mathcal{A}$ has an injective resolution.

  2. If $H^ n(K^\bullet ) = 0$ for all $n \ll 0$ then $K^\bullet $ has an injective resolution.

  3. If $K^\bullet $ is a complex with $K^ n = 0$ for $n < a$, then there exists an injective resolution $\alpha : K^\bullet \to I^\bullet $ with $I^ n = 0$ for $n < a$ such that each $\alpha ^ n : K^ n \to I^ n$ is injective.

Proof. Proof of (1). First choose an injection $A \to I^0$ of $A$ into an injective object of $\mathcal{A}$. Next, choose an injection $I_0/A \to I^1$ into an injective object of $\mathcal{A}$. Denote $d^0$ the induced map $I^0 \to I^1$. Next, choose an injection $I^1/\mathop{\mathrm{Im}}(d^0) \to I^2$ into an injective object of $\mathcal{A}$. Denote $d^1$ the induced map $I^1 \to I^2$. And so on. By Lemma 13.18.2 part (2) follows from part (3). Part (3) is a special case of Lemma 13.16.4. $\square$

Lemma 13.18.4. Let $\mathcal{A}$ be an abelian category. Let $K^\bullet $ be an acyclic complex. Let $I^\bullet $ be bounded below and consisting of injective objects. Any morphism $K^\bullet \to I^\bullet $ is homotopic to zero.

Proof. Let $\alpha : K^\bullet \to I^\bullet $ be a morphism of complexes. Assume that $\alpha ^ j = 0$ for $j < n$. We will show that there exists a morphism $h : K^{n + 1} \to I^ n$ such that $\alpha ^ n = h \circ d$. Thus $\alpha $ will be homotopic to the morphism of complexes $\beta $ defined by

\[ \beta ^ j = \left\{ \begin{matrix} 0 & \text{if} & j \leq n \\ \alpha ^{n + 1} - d \circ h & \text{if} & j = n + 1 \\ \alpha ^ j & \text{if} & j > n + 1 \end{matrix} \right. \]

This will clearly prove the lemma (by induction). To prove the existence of $h$ note that $\alpha ^ n|_{d^{n - 1}(K^{n - 1})} = 0$ since $\alpha ^{n - 1} = 0$. Since $K^\bullet $ is acyclic we have $d^{n - 1}(K^{n - 1}) = \mathop{\mathrm{Ker}}(K^ n \to K^{n + 1})$. Hence we can think of $\alpha ^ n$ as a map into $I^ n$ defined on the subobject $\mathop{\mathrm{Im}}(K^ n \to K^{n + 1})$ of $K^{n + 1}$. By injectivity of the object $I^ n$ we can extend this to a map $h : K^{n + 1} \to I^ n$ as desired. $\square$

Remark 13.18.5. Let $\mathcal{A}$ be an abelian category. Using the fact that $K(\mathcal{A})$ is a triangulated category we may use Lemma 13.18.4 to obtain proofs of some of the lemmas below which are usually proved by chasing through diagrams. Namely, suppose that $\alpha : K^\bullet \to L^\bullet $ is a quasi-isomorphism of complexes. Then

\[ (K^\bullet , L^\bullet , C(\alpha )^\bullet , \alpha , i, -p) \]

is a distinguished triangle in $K(\mathcal{A})$ (Lemma 13.9.14) and $C(\alpha )^\bullet $ is an acyclic complex (Lemma 13.11.2). Next, let $I^\bullet $ be a bounded below complex of injective objects. Then

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(C(\alpha )^\bullet , I^\bullet ) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(L^\bullet , I^\bullet ) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(K^\bullet , I^\bullet ) \ar[lld] \\ \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(C(\alpha )^\bullet [-1], I^\bullet ) } \]

is an exact sequence of abelian groups, see Lemma 13.4.2. At this point Lemma 13.18.4 guarantees that the outer two groups are zero and hence $\mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(L^\bullet , I^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(K^\bullet , I^\bullet )$.

Lemma 13.18.6. Let $\mathcal{A}$ be an abelian category. Consider a solid diagram

\[ \xymatrix{ K^\bullet \ar[r]_\alpha \ar[d]_\gamma & L^\bullet \ar@{-->}[dl]^\beta \\ I^\bullet } \]

where $I^\bullet $ is bounded below and consists of injective objects, and $\alpha $ is a quasi-isomorphism.

  1. There exists a map of complexes $\beta $ making the diagram commute up to homotopy.

  2. If $\alpha $ is injective in every degree then we can find a $\beta $ which makes the diagram commute.

Proof. The “correct” proof of part (1) is explained in Remark 13.18.5. We also give a direct proof here.

We first show that (2) implies (1). Namely, let $\tilde\alpha : K \to \tilde L^\bullet $, $\pi $, $s$ be as in Lemma 13.9.6. Since $\tilde\alpha $ is injective by (2) there exists a morphism $\tilde\beta : \tilde L^\bullet \to I^\bullet $ such that $\gamma = \tilde\beta \circ \tilde\alpha $. Set $\beta = \tilde\beta \circ s$. Then we have

\[ \beta \circ \alpha = \tilde\beta \circ s \circ \pi \circ \tilde\alpha \sim \tilde\beta \circ \tilde\alpha = \gamma \]

as desired.

Assume that $\alpha : K^\bullet \to L^\bullet $ is injective. Suppose we have already defined $\beta $ in all degrees $\leq n - 1$ compatible with differentials and such that $\gamma ^ j = \beta ^ j \circ \alpha ^ j$ for all $j \leq n - 1$. Consider the commutative solid diagram

\[ \xymatrix{ K^{n - 1} \ar[r] \ar@/_2pc/[dd]_\gamma \ar[d]^\alpha & K^ n \ar@/^2pc/[dd]^\gamma \ar[d]^\alpha \\ L^{n - 1} \ar[r] \ar[d]^\beta & L^ n \ar@{-->}[d] \\ I^{n - 1} \ar[r] & I^ n } \]

Thus we see that the dotted arrow is prescribed on the subobjects $\alpha (K^ n)$ and $d^{n - 1}(L^{n - 1})$. Moreover, these two arrows agree on $\alpha (d^{n - 1}(K^{n - 1}))$. Hence if

13.18.6.1
\begin{equation} \label{derived-equation-qis} \alpha (d^{n - 1}(K^{n - 1})) = \alpha (K^ n) \cap d^{n - 1}(L^{n - 1}) \end{equation}

then these morphisms glue to a morphism $\alpha (K^ n) + d^{n - 1}(L^{n - 1}) \to I^ n$ and, using the injectivity of $I^ n$, we can extend this to a morphism from all of $L^ n$ into $I^ n$. After this by induction we get the morphism $\beta $ for all $n$ simultaneously (note that we can set $\beta ^ n = 0$ for all $n \ll 0$ since $I^\bullet $ is bounded below – in this way starting the induction).

It remains to prove the equality (13.18.6.1). The reader is encouraged to argue this for themselves with a suitable diagram chase. Nonetheless here is our argument. Note that the inclusion $\alpha (d^{n - 1}(K^{n - 1})) \subset \alpha (K^ n) \cap d^{n - 1}(L^{n - 1})$ is obvious. Take an object $T$ of $\mathcal{A}$ and a morphism $x : T \to L^ n$ whose image is contained in the subobject $\alpha (K^ n) \cap d^{n - 1}(L^{n - 1})$. Since $\alpha $ is injective we see that $x = \alpha \circ x'$ for some $x' : T \to K^ n$. Moreover, since $x$ lies in $d^{n - 1}(L^{n - 1})$ we see that $d^ n \circ x = 0$. Hence using injectivity of $\alpha $ again we see that $d^ n \circ x' = 0$. Thus $x'$ gives a morphism $[x'] : T \to H^ n(K^\bullet )$. On the other hand the corresponding map $[x] : T \to H^ n(L^\bullet )$ induced by $x$ is zero by assumption. Since $\alpha $ is a quasi-isomorphism we conclude that $[x'] = 0$. This of course means exactly that the image of $x'$ is contained in $d^{n - 1}(K^{n - 1})$ and we win. $\square$

Lemma 13.18.7. Let $\mathcal{A}$ be an abelian category. Consider a solid diagram

\[ \xymatrix{ K^\bullet \ar[r]_\alpha \ar[d]_\gamma & L^\bullet \ar@{-->}[dl]^{\beta _ i} \\ I^\bullet } \]

where $I^\bullet $ is bounded below and consists of injective objects, and $\alpha $ is a quasi-isomorphism. Any two morphisms $\beta _1, \beta _2$ making the diagram commute up to homotopy are homotopic.

Proof. This follows from Remark 13.18.5. We also give a direct argument here.

Let $\tilde\alpha : K \to \tilde L^\bullet $, $\pi $, $s$ be as in Lemma 13.9.6. If we can show that $\beta _1 \circ \pi $ is homotopic to $\beta _2 \circ \pi $, then we deduce that $\beta _1 \sim \beta _2$ because $\pi \circ s$ is the identity. Hence we may assume $\alpha ^ n : K^ n \to L^ n$ is the inclusion of a direct summand for all $n$. Thus we get a short exact sequence of complexes

\[ 0 \to K^\bullet \to L^\bullet \to M^\bullet \to 0 \]

which is termwise split and such that $M^\bullet $ is acyclic. We choose splittings $L^ n = K^ n \oplus M^ n$, so we have $\beta _ i^ n : K^ n \oplus M^ n \to I^ n$ and $\gamma ^ n : K^ n \to I^ n$. In this case the condition on $\beta _ i$ is that there are morphisms $h_ i^ n : K^ n \to I^{n - 1}$ such that

\[ \gamma ^ n - \beta _ i^ n|_{K^ n} = d \circ h_ i^ n + h_ i^{n + 1} \circ d \]

Thus we see that

\[ \beta _1^ n|_{K^ n} - \beta _2^ n|_{K^ n} = d \circ (h_1^ n - h_2^ n) + (h_1^{n + 1} - h_2^{n + 1}) \circ d \]

Consider the map $h^ n : K^ n \oplus M^ n \to I^{n - 1}$ which equals $h_1^ n - h_2^ n$ on the first summand and zero on the second. Then we see that

\[ \beta _1^ n - \beta _2^ n - (d \circ h^ n + h^{n + 1}) \circ d) \]

is a morphism of complexes $L^\bullet \to I^\bullet $ which is identically zero on the subcomplex $K^\bullet $. Hence it factors as $L^\bullet \to M^\bullet \to I^\bullet $. Thus the result of the lemma follows from Lemma 13.18.4. $\square$

Lemma 13.18.8. Let $\mathcal{A}$ be an abelian category. Let $I^\bullet $ be bounded below complex consisting of injective objects. Let $L^\bullet \in K(\mathcal{A})$. Then

\[ \mathop{Mor}\nolimits _{K(\mathcal{A})}(L^\bullet , I^\bullet ) = \mathop{Mor}\nolimits _{D(\mathcal{A})}(L^\bullet , I^\bullet ). \]

Proof. Let $a$ be an element of the right hand side. We may represent $a = \gamma \alpha ^{-1}$ where $\alpha : K^\bullet \to L^\bullet $ is a quasi-isomorphism and $\gamma : K^\bullet \to I^\bullet $ is a map of complexes. By Lemma 13.18.6 we can find a morphism $\beta : L^\bullet \to I^\bullet $ such that $\beta \circ \alpha $ is homotopic to $\gamma $. This proves that the map is surjective. Let $b$ be an element of the left hand side which maps to zero in the right hand side. Then $b$ is the homotopy class of a morphism $\beta : L^\bullet \to I^\bullet $ such that there exists a quasi-isomorphism $\alpha : K^\bullet \to L^\bullet $ with $\beta \circ \alpha $ homotopic to zero. Then Lemma 13.18.7 shows that $\beta $ is homotopic to zero also, i.e., $b = 0$. $\square$

Lemma 13.18.9. Let $\mathcal{A}$ be an abelian category. Assume $\mathcal{A}$ has enough injectives. For any short exact sequence $0 \to A^\bullet \to B^\bullet \to C^\bullet \to 0$ of $\text{Comp}^{+}(\mathcal{A})$ there exists a commutative diagram in $\text{Comp}^{+}(\mathcal{A})$

\[ \xymatrix{ 0 \ar[r] & A^\bullet \ar[r] \ar[d] & B^\bullet \ar[r] \ar[d] & C^\bullet \ar[r] \ar[d] & 0 \\ 0 \ar[r] & I_1^\bullet \ar[r] & I_2^\bullet \ar[r] & I_3^\bullet \ar[r] & 0 } \]

where the vertical arrows are injective resolutions and the rows are short exact sequences of complexes. In fact, given any injective resolution $A^\bullet \to I^\bullet $ we may assume $I_1^\bullet = I^\bullet $.

Proof. Step 1. Choose an injective resolution $A^\bullet \to I^\bullet $ (see Lemma 13.18.3) or use the given one. Recall that $\text{Comp}^{+}(\mathcal{A})$ is an abelian category, see Homology, Lemma 12.12.9. Hence we may form the pushout along the injective map $A^\bullet \to I^\bullet $ to get

\[ \xymatrix{ 0 \ar[r] & A^\bullet \ar[r] \ar[d] & B^\bullet \ar[r] \ar[d] & C^\bullet \ar[r] \ar[d] & 0 \\ 0 \ar[r] & I^\bullet \ar[r] & E^\bullet \ar[r] & C^\bullet \ar[r] & 0 } \]

Note that the lower short exact sequence is termwise split, see Homology, Lemma 12.24.2. Hence it suffices to prove the lemma when $0 \to A^\bullet \to B^\bullet \to C^\bullet \to 0$ is termwise split.

Step 2. Choose splittings. In other words, write $B^ n = A^ n \oplus C^ n$. Denote $\delta : C^\bullet \to A^\bullet [1]$ the morphism as in Homology, Lemma 12.13.10. Choose injective resolutions $f_1 : A^\bullet \to I_1^\bullet $ and $f_3 : C^\bullet \to I_3^\bullet $. (If $A^\bullet $ is a complex of injectives, then use $I_1^\bullet = A^\bullet $.) We may assume $f_3$ is injective in every degree. By Lemma 13.18.6 we may find a morphism $\delta ' : I_3^\bullet \to I_1^\bullet [1]$ such that $\delta ' \circ f_3 = f_1[1] \circ \delta $ (equality of morphisms of complexes). Set $I_2^ n = I_1^ n \oplus I_3^ n$. Define

\[ d_{I_2}^ n = \left( \begin{matrix} d_{I_1}^ n & (\delta ')^ n \\ 0 & d_{I_3}^ n \end{matrix} \right) \]

and define the maps $B^ n \to I_2^ n$ to be given as the sum of the maps $A^ n \to I_1^ n$ and $C^ n \to I_3^ n$. Everything is clear. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 013G. Beware of the difference between the letter 'O' and the digit '0'.