Lemma 76.9.6. Let $S$ be a scheme. Let $X \subset X'$ be a thickening of algebraic spaces over $S$. The functor
defines an equivalence of categories $X'_{\acute{e}tale}\to X_{\acute{e}tale}$.
Lemma 76.9.6. Let $S$ be a scheme. Let $X \subset X'$ be a thickening of algebraic spaces over $S$. The functor
defines an equivalence of categories $X'_{\acute{e}tale}\to X_{\acute{e}tale}$.
Proof. The functor $V' \mapsto V$ defines an equivalence of categories $X'_{spaces, {\acute{e}tale}} \to X_{spaces, {\acute{e}tale}}$, see Theorem 76.8.1. Thus it suffices to show that $V$ is a scheme if and only if $V'$ is a scheme. This is the content of Lemma 76.9.5. $\square$
Comments (0)