Lemma 76.12.2. Let $i : Z \to X$ be an immersion of algebraic spaces.
The first order infinitesimal neighbourhood $Z'$ of $Z$ in $X$ has the following universal property: Given any commutative diagram
\[ \xymatrix{ Z \ar[d]_ i & T \ar[l]^ a \ar[d] \\ X & T' \ar[l]_ b } \]where $T \subset T'$ is a first order thickening over $X$, there exists a unique morphism $(a', a) : (T \subset T') \to (Z \subset Z')$ of thickenings over $X$.
For $n \geq 1$ the $n$th order infinitesimal neighbourhood $Z_ n$ of $Z$ in $X$ has the following universal property: Given any commutative diagram
\[ \xymatrix{ Z \ar[d]_ i & T \ar[l]^ a \ar[d] \\ X & T' \ar[l]_ b } \]where $T \subset T'$ is an $n$th order thickening over $X$, there exists a unique morphism $(a', a) : (T \subset T') \to (Z \subset Z_ n)$ of thickenings over $X$.
Comments (0)