Lemma 76.15.3. Let S be a scheme. Let Z \to Y \to X be morphisms of algebraic spaces over S. Assume Z \to Y is étale.
If Y \subset Y' is a universal first order thickening of Y over X, then the unique étale morphism Z' \to Y' such that Z = Y \times _{Y'} Z' (see Theorem 76.8.1) is a universal first order thickening of Z over X.
If Z \to Y is surjective and (Z \subset Z') \to (Y \subset Y') is an étale morphism of first order thickenings over X and Z' is a universal first order thickening of Z over X, then Y' is a universal first order thickening of Y over X.
Comments (0)
There are also: