Lemma 74.6.1. Let X be an algebraic space over a scheme S. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Let \{ f_ i : X_ i \to X\} _{i \in I} be an fpqc covering such that each f_ i^*\mathcal{F} is a finite type \mathcal{O}_{X_ i}-module. Then \mathcal{F} is a finite type \mathcal{O}_ X-module.
Proof. This follows from the case of schemes, see Descent, Lemma 35.7.1, by étale localization. \square
Comments (0)