Processing math: 100%

The Stacks project

Lemma 74.6.1. Let X be an algebraic space over a scheme S. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Let \{ f_ i : X_ i \to X\} _{i \in I} be an fpqc covering such that each f_ i^*\mathcal{F} is a finite type \mathcal{O}_{X_ i}-module. Then \mathcal{F} is a finite type \mathcal{O}_ X-module.

Proof. This follows from the case of schemes, see Descent, Lemma 35.7.1, by étale localization. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.