Lemma 10.69.6. Let $(R, \mathfrak m)$ be a local Noetherian ring. Let $M$ be a nonzero finite $R$-module. Let $f_1, \ldots , f_ c \in \mathfrak m$ be an $M$-quasi-regular sequence. Then $f_1, \ldots , f_ c$ is an $M$-regular sequence.

**Proof.**
Set $J = (f_1, \ldots , f_ c)$. Let us show that $f_1$ is a nonzerodivisor on $M$. Suppose $x \in M$ is not zero. By Krull's intersection theorem there exists an integer $r$ such that $x \in J^ rM$ but $x \not\in J^{r + 1}M$, see Lemma 10.51.4. Then $f_1 x \in J^{r + 1}M$ is an element whose class in $J^{r + 1}M/J^{r + 2}M$ is nonzero by the assumed structure of $\bigoplus J^ nM/J^{n + 1}M$. Whence $f_1x \not= 0$.

Now we can finish the proof by induction on $c$ using Lemma 10.69.5. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #2656 by Ko Aoki on

Comment #2672 by Johan on