Remark 10.69.7 (Other types of regular sequences). In the paper [Kabele] the author discusses two more regularity conditions for sequences $x_1, \ldots , x_ r$ of elements of a ring $R$. Namely, we say the sequence is Koszul-regular if $H_ i(K_{\bullet }(R, x_{\bullet })) = 0$ for $i \geq 1$ where $K_{\bullet }(R, x_{\bullet })$ is the Koszul complex. The sequence is called $H_1$-regular if $H_1(K_{\bullet }(R, x_{\bullet })) = 0$. One has the implications regular $\Rightarrow $ Koszul-regular $\Rightarrow $ $H_1$-regular $\Rightarrow $ quasi-regular. By examples the author shows that these implications cannot be reversed in general even if $R$ is a (non-Noetherian) local ring and the sequence generates the maximal ideal of $R$. We introduce these notions in more detail in More on Algebra, Section 15.30.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7023 by Jonathan on
Comment #7238 by Johan on
There are also: