Lemma 31.20.3. Let X be a ringed space. Let \mathcal{J} be a sheaf of ideals. We have the following implications: \mathcal{J} is regular \Rightarrow \mathcal{J} is Koszul-regular \Rightarrow \mathcal{J} is H_1-regular \Rightarrow \mathcal{J} is quasi-regular.
Proof. The lemma immediately reduces to Lemma 31.20.1. \square
Comments (0)