The Stacks project

Lemma 31.20.1. Let $X$ be a ringed space. Let $f_1, \ldots , f_ r \in \Gamma (X, \mathcal{O}_ X)$. We have the following implications $f_1, \ldots , f_ r$ is a regular sequence $\Rightarrow $ $f_1, \ldots , f_ r$ is a Koszul-regular sequence $\Rightarrow $ $f_1, \ldots , f_ r$ is an $H_1$-regular sequence $\Rightarrow $ $f_1, \ldots , f_ r$ is a quasi-regular sequence.

Proof. Since we may check exactness at stalks, a sequence $f_1, \ldots , f_ r$ is a regular sequence if and only if the maps

\[ f_ i : \mathcal{O}_{X, x}/(f_1, \ldots , f_{i - 1}) \longrightarrow \mathcal{O}_{X, x}/(f_1, \ldots , f_{i - 1}) \]

are injective for all $x \in X$. In other words, the image of the sequence $f_1, \ldots , f_ r$ in the ring $\mathcal{O}_{X, x}$ is a regular sequence for all $x \in X$. The other types of regularity can be checked stalkwise as well (details omitted). Hence the implications follow from More on Algebra, Lemmas 15.30.2, 15.30.3, and 15.30.6. $\square$


Comments (1)

Comment #11012 by Branislav Sobot on

The image of the sequence in the ring might not be regular since these elements could generated the unit ideal, but it is "weakly regular" (just forget this condition) and these are Koszul regular.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 063C. Beware of the difference between the letter 'O' and the digit '0'.