Lemma 13.19.4. Let $\mathcal{A}$ be an abelian category. Let $K^\bullet $ be an acyclic complex. Let $P^\bullet $ be bounded above and consisting of projective objects. Any morphism $P^\bullet \to K^\bullet $ is homotopic to zero.
Proof. Dual to Lemma 13.18.4. $\square$
Comments (0)