Remark 13.19.5. Let \mathcal{A} be an abelian category. Suppose that \alpha : K^\bullet \to L^\bullet is a quasi-isomorphism of complexes. Let P^\bullet be a bounded above complex of projectives. Then
\mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(P^\bullet , K^\bullet ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(P^\bullet , L^\bullet )
is an isomorphism. This is dual to Remark 13.18.5.
Comments (2)
Comment #9851 by hijyen belgesi on
Comment #10059 by Antalya Dental Clinic on