Lemma 29.32.18. Let
\[ \xymatrix{ Z \ar[r]_ i \ar[rd]_ j & X \ar[d] \\ & Y } \]
be a commutative diagram of schemes where $i$ and $j$ are immersions. Then there is a canonical exact sequence
\[ \mathcal{C}_{Z/Y} \to \mathcal{C}_{Z/X} \to i^*\Omega _{X/Y} \to 0 \]
where the first arrow comes from Lemma 29.31.3 and the second from Lemma 29.32.15.
Comments (0)
There are also: