Lemma 37.60.3. A flat base change of a pseudo-coherent morphism is pseudo-coherent.
Proof. This translates into the following algebra result: Let $A \to B$ be a pseudo-coherent ring map. Let $A \to A'$ be flat. Then $A' \to B \otimes _ A A'$ is pseudo-coherent. This follows from the more general More on Algebra, Lemma 15.81.12. $\square$
Comments (0)