Lemma 37.10.2. Consider a commutative diagram
\[ \xymatrix{ (X \subset X') \ar[rr]_{(f, f')} \ar[rd] & & (Y \subset Y') \ar[ld] \\ & (S \subset S') } \]
of thickenings. Assume
$X'$ is flat over $S'$,
$f$ is flat,
$S \subset S'$ is a finite order thickening, and
$X = S \times _{S'} X'$ and $Y = S \times _{S'} Y'$.
Then $f'$ is flat and $Y'$ is flat over $S'$ at all points in the image of $f'$.
Comments (0)