Definition 76.44.2. Let $S$ be a scheme. Let $i : X \to Y$ be a morphism of algebraic spaces over $S$.

We say $i$ is a

*Koszul-regular immersion*if $i$ is representable and the equivalent conditions of Lemma 76.44.1 hold with $\mathcal{P}(f) =$“$f$ is a Koszul-regular immersion”.We say $i$ is an

*$H_1$-regular immersion*if $i$ is representable and the equivalent conditions of Lemma 76.44.1 hold with $\mathcal{P}(f) =$“$f$ is an $H_1$-regular immersion”.We say $i$ is a

*quasi-regular immersion*if $i$ is representable and the equivalent conditions of Lemma 76.44.1 hold with $\mathcal{P}(f) =$“$f$ is a quasi-regular immersion”.

## Comments (0)