Lemma 67.38.11. Let S be a scheme. Let X \to Y \to Z be morphisms of algebraic spaces over S. If X \to Z is unramified, then X \to Y is unramified.
Proof. Choose a commutative diagram
\xymatrix{ U \ar[d] \ar[r] & V \ar[d] \ar[r] & W \ar[d] \\ X \ar[r] & Y \ar[r] & Z }
with vertical arrows étale and surjective. (See Spaces, Lemma 65.11.6.) Apply Morphisms, Lemma 29.35.16 to the top row. \square
Comments (0)