Definition 90.8.1. Let \varphi : \mathcal{F} \to \mathcal{G} be a morphism of categories cofibered in groupoids over \mathcal{C}_\Lambda . We say \varphi is smooth if it satisfies the following condition: Let B \to A be a surjective ring map in \mathcal{C}_\Lambda . Let y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{G}(B)), x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(A)), and y \to \varphi (x) be a morphism lying over B \to A. Then there exists x' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(B)), a morphism x' \to x lying over B \to A, and a morphism \varphi (x') \to y lying over \text{id}: B \to B, such that the diagram
commutes.
Comments (0)
There are also: