Processing math: 100%

The Stacks project

Definition 90.8.1. Let \varphi : \mathcal{F} \to \mathcal{G} be a morphism of categories cofibered in groupoids over \mathcal{C}_\Lambda . We say \varphi is smooth if it satisfies the following condition: Let B \to A be a surjective ring map in \mathcal{C}_\Lambda . Let y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{G}(B)), x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(A)), and y \to \varphi (x) be a morphism lying over B \to A. Then there exists x' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(B)), a morphism x' \to x lying over B \to A, and a morphism \varphi (x') \to y lying over \text{id}: B \to B, such that the diagram

\xymatrix{ \varphi (x') \ar[r] \ar[dr] & y \ar[d] \\ & \varphi (x) }

commutes.


Comments (0)

There are also:

  • 2 comment(s) on Section 90.8: Smooth morphisms

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.