The Stacks Project


Tag 06HF

80.8. Smooth morphisms

In this section we discuss smooth morphisms of categories cofibered in groupoids over $\mathcal{C}_\Lambda$.

Definition 80.8.1. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of categories cofibered in groupoids over $\mathcal{C}_\Lambda$. We say $\varphi$ is smooth if it satisfies the following condition: Let $B \to A$ be a surjective ring map in $\mathcal{C}_\Lambda$. Let $y \in \mathop{\rm Ob}\nolimits(\mathcal{G}(B)), x \in \mathop{\rm Ob}\nolimits(\mathcal{F}(A))$, and $y \to \varphi(x)$ be a morphism lying over $B \to A$. Then there exists $x' \in \mathop{\rm Ob}\nolimits(\mathcal{F}(B))$, a morphism $x' \to x$ lying over $B \to A$, and a morphism $\varphi(x') \to y$ lying over $\text{id}: B \to B$, such that the diagram $$ \xymatrix{ \varphi(x') \ar[r] \ar[dr] & y \ar[d] \\ & \varphi(x) } $$ commutes.

Lemma 80.8.2. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of categories cofibered in groupoids over $\mathcal{C}_\Lambda$. Then $\varphi$ is smooth if the condition in Definition 80.8.1 is assumed to hold only for small extensions $B \to A$.

Proof. Let $B \to A$ be a surjective ring map in $\mathcal{C}_\Lambda$. Let $y \in \mathop{\rm Ob}\nolimits(\mathcal{G}(B))$, $x \in \mathop{\rm Ob}\nolimits(\mathcal{F}(A))$, and $y \to \varphi(x)$ be a morphism lying over $B \to A$. By Lemma 80.3.3 we can factor $B \to A$ into small extensions $B = B_n \to B_{n-1} \to \ldots \to B_0 = A$. We argue by induction on $n$. If $n = 1$ the result is true by assumption. If $n > 1$, then denote $f : B = B_n \to B_{n - 1}$ and denote $g : B_{n - 1} \to B_0 = A$. Choose a pushforward $y \to f_* y$ of $y$ along $f$, so that the morphism $y \to \varphi(x)$ factors as $y \to f_* y \to \varphi(x)$. By the induction hypothesis we can find $x_{n - 1} \to x$ lying over $g : B_{n - 1} \to A$ and $a : \varphi(x_{n - 1}) \to f_*y$ lying over $\text{id} : B_{n - 1} \to B_{n - 1}$ such that $$ \xymatrix{ \varphi(x_{n - 1}) \ar[r]_-a \ar[dr] & f_*y \ar[d] \\ & \varphi(x) } $$ commutes. We can apply the assumption to the composition $y \to \varphi(x_{n - 1})$ of $y \to f_*y$ with $a^{-1} : f_*y \to \varphi(x_{n - 1})$. We obtain $x_n \to x_{n - 1}$ lying over $B_n \to B_{n - 1}$ and $\varphi(x_n) \to y$ lying over $\text{id} : B_n \to B_n$ so that the diagram $$ \xymatrix{ \varphi(x_n) \ar[r] \ar[d] & y \ar[d] \\ \varphi(x_{n - 1}) \ar[r]^-a \ar[dr] & f_*y \ar[d] \\ & \varphi(x) } $$ commutes. Then the composition $x_n \to x_{n - 1} \to x$ and $\varphi(x_n) \to y$ are the morphisms required by the definition of smoothness. $\square$

Remark 80.8.3. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of categories cofibered in groupoids over $\mathcal{C}_\Lambda$. Let $B \to A$ be a ring map in $\mathcal{C}_\Lambda$. Choices of pushforwards along $B \to A$ for objects in the fiber categories $\mathcal{F}(B)$ and $\mathcal{G}(B)$ determine functors $\mathcal{F}(B) \to \mathcal{F}(A)$ and $\mathcal{G}(B) \to \mathcal{G}(A)$ fitting into a $2$-commutative diagram $$ \xymatrix{ \mathcal{F}(B) \ar[r]^{\varphi} \ar[d] & \mathcal{G}(B) \ar[d] \\ \mathcal{F}(A) \ar[r]^{\varphi} & \mathcal{G}(A) . } $$ Hence there is an induced functor $\mathcal{F}(B) \to \mathcal{F}(A) \times_{\mathcal{G}(A)} \mathcal{G}(B)$. Unwinding the definitions shows that $\varphi : \mathcal{F} \to \mathcal{G}$ is smooth if and only if this induced functor is essentially surjective whenever $B \to A$ is surjective (or equivalently, by Lemma 80.8.2, whenever $B \to A$ is a small extension).

Remark 80.8.4. The characterization of smooth morphisms in Remark 80.8.3 is analogous to Schlessinger's notion of a smooth morphism of functors, cf. [Sch, Definition 2.2.]. In fact, when $\mathcal{F}$ and $\mathcal{G}$ are cofibered in sets then our notion is equivalent to Schlessinger's. Namely, in this case let $F, G : \mathcal{C}_\Lambda \to \textit{Sets}$ be the corresponding functors, see Remarks 80.5.2 (11). Then $F \to G$ is smooth if and only if for every surjection of rings $B \to A$ in $\mathcal{C}_\Lambda$ the map $F(B) \to F(A) \times_{G(A)} G(B)$ is surjective.

Remark 80.8.5. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal{C}_\Lambda$. Then the morphism $\mathcal{F} \to \overline{\mathcal{F}}$ is smooth. Namely, suppose that $f : B \to A$ is a ring map in $\mathcal{C}_\Lambda$. Let $x \in \mathop{\rm Ob}\nolimits(\mathcal{F}(A))$ and let $\overline{y} \in \overline{\mathcal{F}}(B)$ be the isomorphism class of $y \in \mathop{\rm Ob}\nolimits(\mathcal{F}(B))$ such that $\overline{f_*y} = \overline{x}$. Then we simply take $x' = y$, the implied morphism $x' = y \to x$ over $B \to A$, and the equality $\overline{x'} = \overline{y}$ as the solution to the problem posed in Definition 80.8.1.

If $R \to S$ is a ring map $\widehat{\mathcal{C}}_\Lambda$, then there is an induced morphism $\underline{S} \to \underline{R}$ between the functors $\underline{S}, \underline{R}: \widehat{\mathcal{C}}_\Lambda \to \textit{Sets}$. In this situation, smoothness of the restriction $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$ is a familiar notion:

Lemma 80.8.6. Let $R \to S$ be a ring map in $\widehat{\mathcal{C}}_\Lambda$. Then the induced morphism $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$ is smooth if and only if $S$ is a power series ring over $R$.

Proof. Assume $S$ is a power series ring over $R$. Say $S = R[[x_1, \ldots, x_n]]$. Smoothness of $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$ means the following (see Remark 80.8.4): Given a surjective ring map $B \to A$ in $\mathcal{C}_\Lambda$, a ring map $R \to B$, a ring map $S \to A$ such that the solid diagram $$ \xymatrix{ S \ar[r] \ar@{..>}[rd] & A \\ R \ar[u] \ar[r] & B \ar[u] } $$ is commutative then a dotted arrow exists making the diagram commute. (Note the similarity with Algebra, Definition 10.136.1.) To construct the dotted arrow choose elements $b_i \in B$ whose images in $A$ are equal to the images of $x_i$ in $A$. Note that $b_i \in \mathfrak m_B$ as $x_i$ maps to an element of $\mathfrak m_A$. Hence there is a unique $R$-algebra map $R[[x_1, \ldots, x_n]] \to B$ which maps $x_i$ to $b_i$ and which can serve as our dotted arrow.

Conversely, assume $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$ is smooth. Let $x_1, \ldots, x_n \in S$ be elements whose images form a basis in the relative cotangent space $\mathfrak m_S/(\mathfrak m_R S + \mathfrak m_S^2)$ of $S$ over $R$. Set $T = R[[X_1, \ldots, X_n]]$. Note that both $$ S/(\mathfrak m_R S + \mathfrak m_S^2) \cong R/\mathfrak m_R[x_1, \ldots, x_n]/(x_ix_j) $$ and $$ T/(\mathfrak m_R T + \mathfrak m_T^2) \cong R/\mathfrak m_R[X_1, \ldots, X_n]/(X_iX_j). $$ Let $S/(\mathfrak m_R S + \mathfrak m_S^2) \to T/(\mathfrak m_R T + \mathfrak m_T^2)$ be the local $R$-algebra isomorphism given by mapping the class of $x_i$ to the class of $X_i$. Let $f_1 : S \to T/(\mathfrak m_R T + \mathfrak m_T^2)$ be the composition $S \to S/(\mathfrak m_R S + \mathfrak m_S^2) \to T/(\mathfrak m_R T + \mathfrak m_T^2)$. The assumption that $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$ is smooth means we can lift $f_1$ to a map $f_2 : S \to T/\mathfrak{m}_T^2$, then to a map $f_3 : S \to T/\mathfrak{m}_T^3$, and so on, for all $n \geq 1$. Thus we get an induced map $f : S \to T = \mathop{\rm lim}\nolimits T/\mathfrak m_T^n$ of local $R$-algebras. By our choice of $f_1$, the map $f$ induces an isomorphism $\mathfrak m_S/(\mathfrak m_R S + \mathfrak m_S^2) \to \mathfrak m_T/(\mathfrak m_R T + \mathfrak m_T^2)$ of relative cotangent spaces. Hence $f$ is surjective by Lemma 80.4.2 (where we think of $f$ as a map in $\widehat{\mathcal{C}}_R$). Choose preimages $y_i \in S$ of $X_i \in T$ under $f$. As $T$ is a power series ring over $R$ there exists a local $R$-algebra homomorphism $s : T \to S$ mapping $X_i$ to $y_i$. By construction $f \circ s = \text{id}$. Then $s$ is injective. But $s$ induces an isomorphism on relative cotangent spaces since $f$ does, so it is also surjective by Lemma 80.4.2 again. Hence $s$ and $f$ are isomorphisms. $\square$

Smooth morphisms satisfy the following functorial properties.

Lemma 80.8.7. Let $\varphi : \mathcal{F} \to \mathcal{G}$ and $\psi : \mathcal{G} \to \mathcal{H}$ be morphisms of categories cofibered in groupoids over $\mathcal{C}_\Lambda$.

  1. If $\varphi$ and $\psi$ are smooth, then $\psi \circ \varphi$ is smooth.
  2. If $\varphi$ is essentially surjective and $\psi \circ \varphi$ is smooth, then $\psi$ is smooth.
  3. If $\mathcal{G}' \to \mathcal{G}$ is a morphism of categories cofibered in groupoids and $\varphi$ is smooth, then $\mathcal{F} \times_\mathcal{G} \mathcal{G}' \to \mathcal{G}'$ is smooth.

Proof. Statements (1) and (2) follow immediately from the definitions. Proof of (3) omitted. Hints: use the formulation of smoothness given in Remark 80.8.3 and use that $\mathcal{F} \times_\mathcal{G} \mathcal{G}'$ is the $2$-fibre product, see Remarks 80.5.2 (13). $\square$

Lemma 80.8.8. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a smooth morphism of categories cofibered in groupoids over $\mathcal{C}_\Lambda$. Assume $\varphi : \mathcal{F}(k) \to \mathcal{G}(k)$ is essentially surjective. Then $\varphi : \mathcal{F} \to \mathcal{G}$ and $\widehat{\varphi} : \widehat{\mathcal{F}} \to \widehat{\mathcal{G}}$ are essentially surjective.

Proof. Let $y$ be an object of $\mathcal{G}$ lying over $A \in \mathop{\rm Ob}\nolimits(\mathcal{C}_\Lambda)$. Let $y \to y_0$ be a pushforward of $y$ along $A \to k$. By the assumption on essential surjectivity of $\varphi : \mathcal{F}(k) \to \mathcal{G}(k)$ there exist an object $x_0$ of $\mathcal{F}$ lying over $k$ and an isomorphism $y_0 \to \varphi(x_0)$. Smoothness of $\varphi$ implies there exists an object $x$ of $\mathcal{F}$ over $A$ whose image $\varphi(x)$ is isomorphic to $y$. Thus $\varphi : \mathcal{F} \to \mathcal{G}$ is essentially surjective.

Let $\eta = (R, \eta_n, g_n)$ be an object of $\widehat{\mathcal{G}}$. We construct an object $\xi$ of $\widehat{\mathcal{F}}$ with an isomorphism $\eta \to \varphi(\xi)$. By the assumption on essential surjectivity of $\varphi : \mathcal{F}(k) \to \mathcal{G}(k)$, there exists a morphism $\eta_1 \to \varphi(\xi_1)$ in $\mathcal{G}(k)$ for some $\xi_1 \in \mathop{\rm Ob}\nolimits(\mathcal{F}(k))$. The morphism $\eta_2 \xrightarrow{g_1} \eta_1 \to \varphi(\xi_1)$ lies over the surjective ring map $R/\mathfrak m_R^2 \to k$, hence by smoothness of $\varphi$ there exists $\xi_2 \in \mathop{\rm Ob}\nolimits(\mathcal{F}(R/\mathfrak m_R^2))$, a morphism $f_1: \xi_2 \to \xi_1$ lying over $R/\mathfrak m_R^2 \to k$, and a morphism $\eta_2 \to \varphi(\xi_2)$ such that $$ \xymatrix{ \varphi(\xi_2) \ar[r]^{\varphi(f_1)} & \varphi(\xi_{1}) \\ \eta_2 \ar[u] \ar[r]^{g_1} & \eta_1 \ar[u] \\ } $$ commutes. Continuing in this way we construct an object $\xi = (R, \xi_n, f_n)$ of $\widehat{\mathcal{F}}$ and a morphism $\eta \to \varphi(\xi) = (R, \varphi(\xi_n), \varphi(f_n))$ in $\widehat{\mathcal{G}}(R)$. $\square$

Later we are interested in producing smooth morphisms from prorepresentable functors to predeformation categories $\mathcal{F}$. By the discussion in Remark 80.7.12 these morphisms correspond to certain formal objects of $\mathcal{F}$. More precisely, these are the so-called versal formal objects of $\mathcal{F}$.

Definition 80.8.9. Let $\mathcal{F}$ be a category cofibered in groupoids. Let $\xi$ be a formal object of $\mathcal{F}$ lying over $R \in \mathop{\rm Ob}\nolimits(\widehat{\mathcal{C}}_\Lambda)$. We say $\xi$ is versal if the corresponding morphism $\underline{\xi}: \underline{R}|_{\mathcal{C}_\Lambda} \to \mathcal{F}$ of Remark 80.7.12 is smooth.

Remark 80.8.10. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal C_\Lambda$, and let $\xi$ be a formal object of $\mathcal{F}$. It follows from the definition of smoothness that versality of $\xi$ is equivalent to the following condition: If $$ \xymatrix{ & y \ar[d] \\ \xi \ar[r] & x } $$ is a diagram in $\widehat{\mathcal{F}}$ such that $y \to x$ lies over a surjective map $B \to A$ of Artinian rings (we may assume it is a small extension), then there exists a morphism $\xi \to y$ such that $$ \xymatrix{ & y \ar[d] \\ \xi \ar[r] \ar[ur] & x } $$ commutes. In particular, the condition that $\xi$ be versal does not depend on the choices of pushforwards made in the construction of $\underline{\xi} : \underline{R}|_{\mathcal{C}_\Lambda} \to \mathcal{F}$ in Remark 80.7.12.

Lemma 80.8.11. Let $\mathcal{F}$ be a predeformation category. Let $\xi$ be a versal formal object of $\mathcal{F}$. For any formal object $\eta$ of $\widehat{\mathcal{F}}$, there exists a morphism $\xi \to \eta$.

Proof. By assumption the morphism $\underline{\xi} : \underline{R}|_{\mathcal{C}_\Lambda} \to \mathcal{F}$ is smooth. Then $\iota(\xi) : \underline{R} \to \widehat{\mathcal{F}}$ is the completion of $\underline{\xi}$, see Remark 80.7.12. By Lemma 80.8.8 there exists an object $f$ of $\underline{R}$ such that $\iota(\xi)(f) = \eta$. Then $f$ is a ring map $f : R \to S$ in $\widehat{\mathcal{C}}_\Lambda$. And $\iota(\xi)(f) = \eta$ means that $f_*\xi \cong \eta$ which means exactly that there is a morphism $\xi \to \eta$ lying over $f$. $\square$

    The code snippet corresponding to this tag is a part of the file formal-defos.tex and is located in lines 1887–2249 (see updates for more information).

    \section{Smooth morphisms}
    \label{section-smooth-morphisms}
    
    \noindent
    In this section we discuss smooth morphisms of categories
    cofibered in groupoids over $\mathcal{C}_\Lambda$.
    
    \begin{definition}
    \label{definition-smooth-morphism}
    Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of categories
    cofibered in groupoids over $\mathcal{C}_\Lambda$.  We say  $\varphi$ is
    {\it smooth} if it satisfies the following condition: Let $B \to A$ be
    a surjective ring map in $\mathcal{C}_\Lambda$.  Let $y \in
    \Ob(\mathcal{G}(B)), x \in \Ob(\mathcal{F}(A))$, and $y
    \to \varphi(x)$ be a morphism lying over $B \to A$.  Then there
    exists $x' \in \Ob(\mathcal{F}(B))$, a morphism $x' \to x$
    lying over $B \to A$, and a morphism $\varphi(x') \to y$ lying
    over $\text{id}: B \to B$, such that the diagram
    $$
    \xymatrix{
    \varphi(x') \ar[r] \ar[dr] & y \ar[d] \\
    & \varphi(x)
    }
    $$
    commutes.
    \end{definition}
    
    \begin{lemma}
    \label{lemma-smoothness-small-extensions}
    Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of categories
    cofibered in groupoids over $\mathcal{C}_\Lambda$.  Then $\varphi$ is smooth
    if the condition in Definition \ref{definition-smooth-morphism} is assumed to
    hold only for small extensions $B \to A$.
    \end{lemma}
    
    \begin{proof}
    Let $B \to A$ be a surjective ring map in $\mathcal{C}_\Lambda$.
    Let $y \in \Ob(\mathcal{G}(B))$, $x \in \Ob(\mathcal{F}(A))$,
    and $y \to \varphi(x)$ be a morphism lying over $B \to A$. By
    Lemma \ref{lemma-factor-small-extension} we can factor $B \to A$ into
    small extensions $B = B_n \to B_{n-1} \to \ldots \to B_0 = A$.
    We argue by induction on $n$. If $n = 1$ the result is true by assumption.
    If $n > 1$, then denote $f : B = B_n \to B_{n - 1}$ and denote
    $g : B_{n - 1} \to B_0 = A$. Choose a pushforward
    $y \to f_* y$ of $y$ along $f$, so that the morphism $y \to \varphi(x)$
    factors as $y \to f_* y \to \varphi(x)$. By the induction hypothesis
    we can find $x_{n - 1} \to x$ lying over $g : B_{n - 1} \to A$ and
    $a : \varphi(x_{n - 1}) \to f_*y$ lying over
    $\text{id} : B_{n - 1} \to B_{n - 1}$ such that
    $$
    \xymatrix{
    \varphi(x_{n - 1}) \ar[r]_-a \ar[dr] & f_*y \ar[d] \\
    & \varphi(x)
    }
    $$
    commutes. We can apply the assumption to the composition
    $y \to \varphi(x_{n - 1})$ of
    $y \to f_*y$ with $a^{-1} : f_*y \to \varphi(x_{n - 1})$. We obtain
    $x_n \to x_{n - 1}$ lying over $B_n \to B_{n - 1}$ and
    $\varphi(x_n) \to y$ lying over  $\text{id} : B_n \to B_n$ so that the diagram
    $$
    \xymatrix{
    \varphi(x_n) \ar[r] \ar[d] & y \ar[d] \\
    \varphi(x_{n - 1}) \ar[r]^-a \ar[dr] & f_*y \ar[d] \\
    & \varphi(x)
    }
    $$
    commutes. Then the composition $x_n \to x_{n - 1} \to x$ and
    $\varphi(x_n) \to y$ are the morphisms required by the definition of
    smoothness.
    \end{proof}
    
    \begin{remark}
    \label{remark-smoothness-2-categorical}
    Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of categories
    cofibered in groupoids over $\mathcal{C}_\Lambda$.  Let $B \to A$ be a
    ring map in $\mathcal{C}_\Lambda$.  Choices of pushforwards along $B
    \to A$ for objects in the fiber categories $\mathcal{F}(B)$ and
    $\mathcal{G}(B)$ determine functors $\mathcal{F}(B) \to \mathcal{F}(A)$
    and $\mathcal{G}(B) \to \mathcal{G}(A)$ fitting into a $2$-commutative
    diagram
    $$
    \xymatrix{
    \mathcal{F}(B) \ar[r]^{\varphi} \ar[d] & \mathcal{G}(B) \ar[d] \\
    \mathcal{F}(A) \ar[r]^{\varphi}        & \mathcal{G}(A) .
    }
    $$
    Hence there is an induced functor $\mathcal{F}(B) \to \mathcal{F}(A)
    \times_{\mathcal{G}(A)} \mathcal{G}(B)$.  Unwinding the definitions shows that
    $\varphi : \mathcal{F} \to \mathcal{G}$ is smooth if and only if this
    induced functor is essentially surjective whenever $B \to A$ is
    surjective (or equivalently, by
    Lemma \ref{lemma-smoothness-small-extensions},
    whenever $B \to A$ is a small extension).
    \end{remark}
    
    \begin{remark}
    \label{remark-compare-smooth-schlessinger}
    The characterization of smooth morphisms in
    Remark \ref{remark-smoothness-2-categorical}
    is analogous to Schlessinger's notion of
    a smooth morphism of functors, cf.\ \cite[Definition 2.2.]{Sch}. In
    fact, when $\mathcal{F}$ and $\mathcal{G}$ are cofibered in sets
    then our notion is equivalent to Schlessinger's. Namely, in this case
    let $F, G : \mathcal{C}_\Lambda \to \textit{Sets}$ be the corresponding
    functors, see
    Remarks \ref{remarks-cofibered-groupoids}
    (\ref{item-convention-cofibered-sets}).
    Then $F \to G$ is smooth if and only if for every surjection of rings
    $B \to A$ in $\mathcal{C}_\Lambda$ the map $F(B) \to F(A) \times_{G(A)} G(B)$
    is surjective.
    \end{remark}
    
    \begin{remark}
    \label{remark-smooth-to-iso-classes}
    Let $\mathcal{F}$ be a category cofibered in groupoids over
    $\mathcal{C}_\Lambda$. Then the morphism
    $\mathcal{F} \to \overline{\mathcal{F}}$ is smooth.
    Namely, suppose that $f : B \to A$ is a ring map in $\mathcal{C}_\Lambda$.
    Let $x \in \Ob(\mathcal{F}(A))$ and let
    $\overline{y} \in \overline{\mathcal{F}}(B)$
    be the isomorphism class of $y \in \Ob(\mathcal{F}(B))$ such that
    $\overline{f_*y} = \overline{x}$. Then we simply take $x' = y$, the
    implied morphism $x' = y \to x$ over $B \to A$, and the equality
    $\overline{x'} = \overline{y}$ as the solution to
    the problem posed in Definition \ref{definition-smooth-morphism}.
    \end{remark}
    
    \noindent
    If $R \to S$ is a ring map $\widehat{\mathcal{C}}_\Lambda$, then there
    is an induced morphism $\underline{S} \to \underline{R}$ between the
    functors $\underline{S}, \underline{R}: \widehat{\mathcal{C}}_\Lambda
    \to \textit{Sets}$.  In this situation, smoothness of the
    restriction $\underline{S}|_{\mathcal{C}_\Lambda} \to
    \underline{R}|_{\mathcal{C}_\Lambda}$ is a familiar notion:
    
    \begin{lemma}
    \label{lemma-smooth-morphism-power-series}
    Let $R \to S$ be a ring map in $\widehat{\mathcal{C}}_\Lambda$. Then
    the induced morphism
    $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$
    is smooth if and only if $S$ is a power series ring over $R$.
    \end{lemma}
    
    \begin{proof}
    Assume $S$ is a power series ring over $R$. Say $S = R[[x_1, \ldots, x_n]]$.
    Smoothness of
    $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$
    means the following (see Remark \ref{remark-compare-smooth-schlessinger}):
    Given a surjective ring map $B \to A$ in
    $\mathcal{C}_\Lambda$, a ring map $R \to B$, a ring map $S \to A$ such that
    the solid diagram
    $$
    \xymatrix{
    S \ar[r] \ar@{..>}[rd] & A \\
    R \ar[u] \ar[r] & B \ar[u]
    }
    $$
    is commutative then a dotted arrow exists making the diagram commute.
    (Note the similarity with
    Algebra, Definition \ref{algebra-definition-formally-smooth}.)
    To construct the dotted arrow choose elements $b_i \in B$ whose images
    in $A$ are equal to the images of $x_i$ in $A$. Note that
    $b_i \in \mathfrak m_B$ as $x_i$ maps to an element of $\mathfrak m_A$.
    Hence there is a unique $R$-algebra map $R[[x_1, \ldots, x_n]] \to B$
    which maps $x_i$ to $b_i$ and which can serve as our dotted arrow.
    
    \medskip\noindent
    Conversely, assume
    $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$
    is smooth. Let $x_1, \ldots, x_n \in S$ be elements whose images
    form a basis in the relative cotangent space
    $\mathfrak m_S/(\mathfrak m_R S + \mathfrak m_S^2)$ of $S$ over $R$.
    Set $T = R[[X_1, \ldots, X_n]]$. Note that both
    $$
    S/(\mathfrak m_R S + \mathfrak m_S^2) \cong
    R/\mathfrak m_R[x_1, \ldots, x_n]/(x_ix_j)
    $$
    and
    $$
    T/(\mathfrak m_R T + \mathfrak m_T^2) \cong
    R/\mathfrak m_R[X_1, \ldots, X_n]/(X_iX_j).
    $$
    Let
    $S/(\mathfrak m_R S + \mathfrak m_S^2) \to
    T/(\mathfrak m_R T + \mathfrak m_T^2)$
    be the local $R$-algebra isomorphism given by mapping
    the class of $x_i$ to the class of $X_i$. Let
    $f_1 : S \to T/(\mathfrak m_R T + \mathfrak m_T^2)$ be the
    composition
    $S \to S/(\mathfrak m_R S + \mathfrak m_S^2)
    \to T/(\mathfrak m_R T + \mathfrak m_T^2)$.
    The assumption that
    $\underline{S}|_{\mathcal{C}_\Lambda} \to \underline{R}|_{\mathcal{C}_\Lambda}$
    is smooth means we can lift $f_1$ to a map
    $f_2 : S \to T/\mathfrak{m}_T^2$, then to a map
    $f_3 : S \to T/\mathfrak{m}_T^3$, and so on, for all $n \geq 1$. Thus
    we get an induced map $f : S \to T = \lim T/\mathfrak m_T^n$
    of local $R$-algebras. By our choice of $f_1$, the map $f$ induces an
    isomorphism
    $\mathfrak m_S/(\mathfrak m_R S + \mathfrak m_S^2) \to
    \mathfrak m_T/(\mathfrak m_R T + \mathfrak m_T^2)$
    of relative cotangent spaces.
    Hence $f$ is surjective by
    Lemma \ref{lemma-surjective-cotangent-space}
    (where we think of $f$ as a map in $\widehat{\mathcal{C}}_R$).
    Choose preimages $y_i \in S$ of $X_i \in T$ under $f$. As $T$ is a
    power series ring over $R$ there exists a local
    $R$-algebra homomorphism $s : T \to S$ mapping $X_i$ to $y_i$.
    By construction $f \circ s = \text{id}$. Then $s$ is injective.
    But $s$ induces an isomorphism on relative cotangent spaces since
    $f$ does, so it is also surjective by
    Lemma \ref{lemma-surjective-cotangent-space}
    again. Hence $s$ and $f$ are isomorphisms.
    \end{proof}
    
    \noindent
    Smooth morphisms satisfy the following functorial properties.
    
    \begin{lemma}
    \label{lemma-smooth-properties}
    Let $\varphi : \mathcal{F} \to \mathcal{G}$ and $\psi : \mathcal{G}
    \to \mathcal{H}$ be morphisms of categories cofibered in groupoids over
    $\mathcal{C}_\Lambda$.
    \begin{enumerate}
    \item If $\varphi$ and $\psi$ are smooth, then $\psi \circ \varphi$ is smooth.
    \item If $\varphi$ is essentially surjective and $\psi \circ \varphi$ is
    smooth, then $\psi$ is smooth.
    \item If $\mathcal{G}' \to \mathcal{G}$ is a morphism of categories
    cofibered in groupoids and $\varphi$ is smooth, then
    $\mathcal{F} \times_\mathcal{G} \mathcal{G}' \to \mathcal{G}'$ is smooth.
    \end{enumerate}
    \end{lemma}
    
    \begin{proof}
    Statements (1) and (2) follow immediately from the definitions.
    Proof of (3) omitted. Hints: use the formulation of smoothness given in
    Remark \ref{remark-smoothness-2-categorical}
    and use that $\mathcal{F} \times_\mathcal{G} \mathcal{G}'$
    is the $2$-fibre product, see
    Remarks \ref{remarks-cofibered-groupoids} (\ref{item-fibre-product}).
    \end{proof}
    
    \begin{lemma}
    \label{lemma-smooth-morphism-essentially-surjective}
    Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a smooth morphism of
    categories cofibered in groupoids over $\mathcal{C}_\Lambda$.  Assume
    $\varphi : \mathcal{F}(k) \to \mathcal{G}(k)$ is essentially surjective.
    Then $\varphi : \mathcal{F} \to \mathcal{G}$ and
    $\widehat{\varphi} : \widehat{\mathcal{F}} \to \widehat{\mathcal{G}}$
    are essentially surjective.
    \end{lemma}
    
    \begin{proof}
    Let $y$ be an object of $\mathcal{G}$ lying over
    $A \in \Ob(\mathcal{C}_\Lambda)$. Let $y \to y_0$ be a pushforward
    of $y$ along $A \to k$. By the assumption on essential surjectivity of
    $\varphi : \mathcal{F}(k) \to \mathcal{G}(k)$ there exist an object
    $x_0$ of $\mathcal{F}$ lying over $k$ and an isomorphism
    $y_0 \to \varphi(x_0)$. Smoothness of $\varphi$ implies there exists
    an object $x$ of $\mathcal{F}$ over $A$ whose image $\varphi(x)$
    is isomorphic to $y$. Thus $\varphi : \mathcal{F} \to \mathcal{G}$
    is essentially surjective.
    
    \medskip\noindent
    Let $\eta = (R, \eta_n, g_n)$ be an object of $\widehat{\mathcal{G}}$.  We
    construct an object $\xi$ of $\widehat{\mathcal{F}}$ with an isomorphism
    $\eta \to \varphi(\xi)$. By the assumption on essential surjectivity of
    $\varphi : \mathcal{F}(k) \to \mathcal{G}(k)$, there exists a morphism
    $\eta_1 \to \varphi(\xi_1)$ in $\mathcal{G}(k)$ for some
    $\xi_1 \in \Ob(\mathcal{F}(k))$. The morphism
    $\eta_2 \xrightarrow{g_1} \eta_1 \to \varphi(\xi_1)$
    lies over the surjective ring map $R/\mathfrak m_R^2 \to k$, hence
    by smoothness of $\varphi$ there exists
    $\xi_2 \in \Ob(\mathcal{F}(R/\mathfrak m_R^2))$, a
    morphism $f_1: \xi_2 \to \xi_1$ lying over
    $R/\mathfrak m_R^2 \to k$, and a morphism
    $\eta_2 \to \varphi(\xi_2)$ such that
    $$
    \xymatrix{
    \varphi(\xi_2)  \ar[r]^{\varphi(f_1)} &  \varphi(\xi_{1})   \\
    \eta_2   \ar[u] \ar[r]^{g_1}  & \eta_1  \ar[u] \\
    }
    $$
    commutes. Continuing in this way we construct an object
    $\xi = (R, \xi_n, f_n)$ of $\widehat{\mathcal{F}}$ and a morphism
    $\eta \to \varphi(\xi) = (R, \varphi(\xi_n), \varphi(f_n))$
    in $\widehat{\mathcal{G}}(R)$.
    \end{proof}
    
    \noindent
    Later we are interested in producing smooth morphisms from
    prorepresentable functors to predeformation categories $\mathcal{F}$.
    By the discussion in
    Remark \ref{remark-formal-objects-yoneda}
    these morphisms correspond to certain formal objects of $\mathcal{F}$.
    More precisely, these are the so-called versal formal objects of $\mathcal{F}$.
    
    \begin{definition}
    \label{definition-versal}
    Let $\mathcal{F}$ be a category cofibered in groupoids.  Let $\xi$ be a formal
    object of $\mathcal{F}$ lying over $R \in \Ob(\widehat{\mathcal{C}}_\Lambda)$.
    We say $\xi$ is {\it versal} if the corresponding morphism
    $\underline{\xi}: \underline{R}|_{\mathcal{C}_\Lambda} \to \mathcal{F}$
    of Remark \ref{remark-formal-objects-yoneda} is smooth.
    \end{definition}
    
    \begin{remark}
    \label{remark-versal-object}
    Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal
    C_\Lambda$, and let $\xi$ be a formal object of $\mathcal{F}$.  It follows
    from the definition of smoothness that versality of $\xi$ is equivalent to the
    following condition: If
    $$
    \xymatrix{
    & y \ar[d] \\
    \xi \ar[r] & x
    }
    $$
    is a diagram in $\widehat{\mathcal{F}}$ such that $y \to x$ lies over a
    surjective map $B \to A$ of Artinian rings (we may assume it is a small
    extension),  then there exists a morphism $\xi \to y$ such that
    $$
    \xymatrix{
    & y \ar[d] \\
    \xi \ar[r] \ar[ur] & x
    }
    $$
    commutes. In particular, the condition that $\xi$ be versal does not depend on
    the choices of pushforwards made in the construction of
    $\underline{\xi} : \underline{R}|_{\mathcal{C}_\Lambda} \to \mathcal{F}$ in
    Remark \ref{remark-formal-objects-yoneda}.
    \end{remark}
    
    \begin{lemma}
    \label{lemma-versal-object-quasi-initial}
    Let $\mathcal{F}$ be a predeformation category.
    Let $\xi$ be a versal formal object of $\mathcal{F}$.
    For any formal object $\eta$ of $\widehat{\mathcal{F}}$,
    there exists a morphism $\xi \to \eta$.
    \end{lemma}
    
    \begin{proof}
    By assumption the morphism
    $\underline{\xi} : \underline{R}|_{\mathcal{C}_\Lambda} \to \mathcal{F}$
    is smooth. Then
    $\iota(\xi) : \underline{R} \to \widehat{\mathcal{F}}$
    is the completion of $\underline{\xi}$, see
    Remark \ref{remark-formal-objects-yoneda}.
    By
    Lemma \ref{lemma-smooth-morphism-essentially-surjective}
    there exists an object $f$ of $\underline{R}$ such that
    $\iota(\xi)(f) = \eta$. Then $f$ is
    a ring map $f : R \to S$ in $\widehat{\mathcal{C}}_\Lambda$. And
    $\iota(\xi)(f) = \eta$ means that
    $f_*\xi \cong \eta$ which means exactly that there is a morphism
    $\xi \to \eta$ lying over $f$.
    \end{proof}

    Comments (2)

    Comment #2638 by Xiaowen Hu on July 9, 2017 a 1:51 pm UTC

    A typo: in the paragraph before definition 79.8.9, a period mark is missing after the curled F.

    Comment #2661 by Johan (site) on July 28, 2017 a 5:05 pm UTC

    Thanks, fixed here

    Add a comment on tag 06HF

    Your email address will not be published. Required fields are marked.

    In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

    All contributions are licensed under the GNU Free Documentation License.




    In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following box. So in case this where tag 0321 you just have to write 0321. Beware of the difference between the letter 'O' and the digit 0.

    This captcha seems more appropriate than the usual illegible gibberish, right?