Remark 89.8.4. The characterization of smooth morphisms in Remark 89.8.3 is analogous to Schlessinger's notion of a smooth morphism of functors, cf. [Definition 2.2., Sch]. In fact, when $\mathcal{F}$ and $\mathcal{G}$ are cofibered in sets then our notion is equivalent to Schlessinger's. Namely, in this case let $F, G : \mathcal{C}_\Lambda \to \textit{Sets}$ be the corresponding functors, see Remarks 89.5.2 (11). Then $F \to G$ is smooth if and only if for every surjection of rings $B \to A$ in $\mathcal{C}_\Lambda $ the map $F(B) \to F(A) \times _{G(A)} G(B)$ is surjective.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: