The Stacks project

Remark 89.10.3. When $\mathcal{F}$ is cofibered in sets, conditions (S1) and (S2) are exactly conditions (H1) and (H2) from Schlessinger's paper [Sch]. Namely, for a functor $F: \mathcal{C}_\Lambda \to \textit{Sets}$, conditions (S1) and (S2) state:

  1. If $A_1 \to A$ and $A_2 \to A$ are maps in $\mathcal{C}_\Lambda $ with $A_2 \to A$ surjective, then the induced map $F(A_1 \times _ A A_2) \to F(A_1) \times _{F(A)} F(A_2)$ is surjective.

  2. If $A \to k$ is a map in $\mathcal{C}_\Lambda $, then the induced map $F(A \times _ k k[\epsilon ]) \to F(A) \times _{F(k)} F(k[\epsilon ])$ is bijective.

The injectivity of the map $F(A \times _ k k[\epsilon ]) \to F(A) \times _{F(k)} F(k[\epsilon ])$ comes from the second part of condition (S2) and the fact that morphisms are identities.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06HY. Beware of the difference between the letter 'O' and the digit '0'.