Processing math: 100%

The Stacks project

Lemma 90.10.4. Let \mathcal{F} be a category cofibred in groupoids over \mathcal{C}_\Lambda . If \mathcal{F} satisfies (S2), then the condition of (S2) also holds when k[\epsilon ] is replaced by k[V] for any finite dimensional k-vector space V.

Proof. In the case that \mathcal{F} is cofibred in sets, i.e., corresponds to a functor F : \mathcal{C}_\Lambda \to \textit{Sets} this follows from the description of (S2) for F in Remark 90.10.3 and the fact that k[V] \cong k[\epsilon ] \times _ k \ldots \times _ k k[\epsilon ] with \dim _ k V factors. The case of functors is what we will use in the rest of this chapter.

We prove the general case by induction on \dim (V). If \dim (V) = 1, then k[V] \cong k[\epsilon ] and the result holds by assumption. If \dim (V) > 1 we write V = V' \oplus k\epsilon . Pick a diagram

\vcenter { \xymatrix{ & x_ V \ar[d] \\ x \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ & k[V] \ar[d] \\ A \ar[r] & k } }

Choose a morphism x_ V \to x_{V'} lying over k[V] \to k[V'] and a morphism x_ V \to x_\epsilon lying over k[V] \to k[\epsilon ]. Note that the morphism x_ V \to x_0 factors as x_ V \to x_{V'} \to x_0 and as x_ V \to x_\epsilon \to x_0. By induction hypothesis we can find a diagram

\vcenter { \xymatrix{ y' \ar[d] \ar[r] & x_{V'} \ar[d] \\ x \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[V'] \ar[d] \ar[r] & k[V'] \ar[d] \\ A \ar[r] & k } }

This gives us a commutative diagram

\vcenter { \xymatrix{ & x_\epsilon \ar[d] \\ y' \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ & k[\epsilon ] \ar[d] \\ A \times _ k k[V'] \ar[r] & k } }

Hence by (S2) we get a commutative diagram

\vcenter { \xymatrix{ y \ar[d] \ar[r] & x_\epsilon \ar[d] \\ y' \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ (A \times _ k k[V']) \times _ k k[\epsilon ] \ar[d] \ar[r] & k[\epsilon ] \ar[d] \\ A \times _ k k[V'] \ar[r] & k } }

Note that (A \times _ k k[V']) \times _ k k[\epsilon ] = A \times _ k k[V' \oplus k\epsilon ] = A \times _ k k[V]. We claim that y fits into the correct commutative diagram. To see this we let y \to y_ V be a morphism lying over A \times _ k k[V] \to k[V]. We can factor the morphisms y \to y' \to x_{V'} and y \to x_\epsilon through the morphism y \to y_ V (by the axioms of categories cofibred in groupoids). Hence we see that both y_ V and x_ V fit into commutative diagrams

\vcenter { \xymatrix{ y_ V \ar[r] \ar[d] & x_\epsilon \ar[d] \\ x_{V'} \ar[r] & x_0 } } \quad \text{and}\quad \vcenter { \xymatrix{ x_ V \ar[r] \ar[d] & x_\epsilon \ar[d] \\ x_{V'} \ar[r] & x_0 } }

and hence by the second part of (S2) there exists an isomorphism y_ V \to x_ V compatible with y_ V \to x_{V'} and x_ V \to x_{V'} and in particular compatible with the maps to x_0. The composition y \to y_ V \to x_ V then fits into the required commutative diagram

\vcenter { \xymatrix{ y \ar[r] \ar[d] & x_ V \ar[d] \\ x \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[V] \ar[d] \ar[r] & k[V] \ar[d] \\ A \ar[r] & k } }

In this way we see that the first part of (S2) holds with k[\epsilon ] replaced by k[V].

To prove the second part suppose given two commutative diagrams

\vcenter { \xymatrix{ y \ar[r] \ar[d] & x_ V \ar[d] \\ x \ar[r] & x_0 } } \quad \text{and}\quad \vcenter { \xymatrix{ y' \ar[r] \ar[d] & x_ V \ar[d] \\ x \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[V] \ar[d] \ar[r] & k[V] \ar[d] \\ A \ar[r] & k } }

We will use the morphisms x_ V \to x_{V'} \to x_0 and x_ V \to x_\epsilon \to x_0 introduced in the first paragraph of the proof. Choose morphisms y \to y_{V'} and y' \to y'_{V'} lying over A \times _ k k[V] \to A \times _ k k[V']. The axioms of a cofibred category imply we can find commutative diagrams

\vcenter { \xymatrix{ y_{V'} \ar[r] \ar[d] & x_{V'} \ar[d] \\ x \ar[r] & x_0 } } \quad \text{and}\quad \vcenter { \xymatrix{ y'_{V'} \ar[r] \ar[d] & x_{V'} \ar[d] \\ x \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[V'] \ar[d] \ar[r] & k[V'] \ar[d] \\ A \ar[r] & k } }

By induction hypothesis we obtain an isomorphism b : y_{V'} \to y'_{V'} compatible with the morphisms y_{V'} \to x and y'_{V'} \to x, in particular compatible with the morphisms to x_0. Then we have commutative diagrams

\vcenter { \xymatrix{ y \ar[r] \ar[d] & x_\epsilon \ar[d] \\ y'_{V'} \ar[r] & x_0 } } \quad \text{and}\quad \vcenter { \xymatrix{ y' \ar[r] \ar[d] & x_\epsilon \ar[d] \\ y'_{V'} \ar[r] & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[\epsilon ] \ar[d] \ar[r] & k[\epsilon ] \ar[d] \\ A \ar[r] & k } }

where the morphism y \to y'_{V'} is the composition y \to y_{V'} \xrightarrow {b} y'_{V'} and where the morphisms y \to x_\epsilon and y' \to x_\epsilon are the compositions of the maps y \to x_ V and y' \to x_ V with the morphism x_ V \to x_\epsilon . Then the second part of (S2) guarantees the existence of an isomorphism y \to y' compatible with the maps to y'_{V'}, in particular compatible with the maps to x (because b was compatible with the maps to x). \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.