Lemma 89.12.4. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of predeformation categories. Assume $\overline{\mathcal{F}}$ and $\overline{\mathcal{G}}$ both satisfy (S2). Then $d \varphi : T \mathcal{F} \to T \mathcal{G}$ is $k$-linear.
Proof. In the proof of Lemma 89.12.2 we have seen that $\overline{\mathcal{F}}$ and $\overline{\mathcal{G}}$ satisfy the hypotheses of Lemma 89.11.8. Hence the lemma follows from Lemma 89.11.13. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #1421 by Evan Warner on
There are also: