The Stacks project

Lemma 90.12.2. Let $\mathcal{F}$ be a predeformation category such that $\overline{\mathcal{F}}$ satisfies (S2)1. Then $T \mathcal{F}$ has a natural $k$-vector space structure. For any finite dimensional vector space $V$ we have $\overline{\mathcal{F}}(k[V]) = T\mathcal{F} \otimes _ k V$ functorially in $V$.

Proof. Let us write $F = \overline{\mathcal{F}} : \mathcal{C}_\Lambda \to \textit{Sets}$. This is a predeformation functor and $F$ satisfies (S2). By Lemma 90.10.4 (and the translation of Remark 90.10.3) we see that

\[ F(A \times _ k k[V]) \longrightarrow F(A) \times F(k[V]) \]

is a bijection for every finite dimensional vector space $V$ and every $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}_\Lambda )$. In particular, if $A = k[W]$ then we see that $F(k[W] \times _ k k[V]) = F(k[W]) \times F(k[V])$. In other words, the hypotheses of Lemma 90.11.8 hold and we see that $TF = T \mathcal{F}$ has a natural $k$-vector space structure. The final assertion follows from Lemma 90.11.15. $\square$

[1] For example if $\mathcal{F}$ satisfies (S2), see Lemma 90.10.5.

Comments (0)

There are also:

  • 2 comment(s) on Section 90.12: Tangent spaces of predeformation categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06IH. Beware of the difference between the letter 'O' and the digit '0'.