Lemma 90.15.2. Let $\mathcal{F}$ be a predeformation category. Let $\xi$ be a versal formal object of $\mathcal{F}$ such that (90.15.0.1) holds. Then

1. $\mathcal{F}$ satisfies (S1).

2. $\mathcal{F}$ satisfies (S2).

3. $\dim _ k T\mathcal{F}$ is finite.

Proof. Condition (S1) holds by Lemma 90.13.1. The first part of (S2) holds since (S1) holds. Let

$\vcenter { \xymatrix{ y \ar[r]_ c \ar[d]_ a & x_\epsilon \ar[d]^ e \\ x \ar[r]^ d & x_0 } } \quad \text{and}\quad \vcenter { \xymatrix{ y' \ar[r]_{c'} \ar[d]_{a'} & x_\epsilon \ar[d]^ e \\ x \ar[r]^ d & x_0 } } \quad \text{lying over}\quad \vcenter { \xymatrix{ A \times _ k k[\epsilon ] \ar[r] \ar[d] & k[\epsilon ] \ar[d] \\ A \ar[r] & k } }$

be diagrams as in the second part of (S2). As above we can find morphisms $b : \xi \to y$ and $b' : \xi \to y'$ such that

$\xymatrix{ \xi \ar[r]^{b'} \ar[d]_ b & y' \ar[d]^{a'} \\ y \ar[r]^{a} & x }$

commutes. Let $p : \mathcal{F} \to \mathcal{C}_\Lambda$ denote the structure morphism. Say $\widehat{p}(\xi ) = R$, i.e., $\xi$ lies over $R \in \mathop{\mathrm{Ob}}\nolimits (\widehat{\mathcal{C}}_\Lambda )$. We see that the pushforward of $\xi$ via $p(c) \circ p(b)$ is $x_\epsilon$ and that the pushforward of $\xi$ via $p(c') \circ p(b')$ is $x_\epsilon$. Since $\xi$ satisfies (90.15.0.1), we see that $p(c) \circ p(b) = p(c') \circ p(b')$ as maps $R \to k[\epsilon ]$. Hence $p(b) = p(b')$ as maps from $R \to A \times _ k k[\epsilon ]$. Thus we see that $y$ and $y'$ are isomorphic to the pushforward of $\xi$ along this map and we get a unique morphism $y \to y'$ over $A \times _ k k[\epsilon ]$ compatible with $b$ and $b'$ as desired.

Finally, by Example 90.11.11 we see $\dim _ k T\mathcal{F} = \dim _ k T\underline{R}|_{\mathcal{C}_\Lambda }$ is finite. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).