Lemma 88.13.1. Let $\mathcal{F}$ be a predeformation category. Assume $\mathcal{F}$ has a versal formal object. Then $\mathcal{F}$ satisfies (S1).

Proof. Let $\xi$ be a versal formal object of $\mathcal{F}$. Let

$\xymatrix{ & x_2 \ar[d] \\ x_1 \ar[r] & x }$

be a diagram in $\mathcal{F}$ such that $x_2 \to x$ lies over a surjective ring map. Since the natural morphism $\widehat{\mathcal{F}}|_{\mathcal{C}_\Lambda } \xrightarrow {\sim } \mathcal{F}$ is an equivalence (see Remark 88.7.7), we can consider this diagram also as a diagram in $\widehat{\mathcal{F}}$. By Lemma 88.8.11 there exists a morphism $\xi \to x_1$, so by Remark 88.8.10 we also get a morphism $\xi \to x_2$ making the diagram

$\xymatrix{ \xi \ar[r] \ar[d] & x_2 \ar[d] \\ x_1 \ar[r] & x }$

commute. If $x_1 \to x$ and $x_2 \to x$ lie above ring maps $A_1 \to A$ and $A_2 \to A$ then taking the pushforward of $\xi$ to $A_1 \times _ A A_2$ gives an object $y$ as required by (S1). $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).