Remark 90.15.7. Let $\mathcal{F}$ be a predeformation category. Recall that $\mathcal{F} \to \overline{\mathcal{F}}$ is smooth, see Remark 90.8.5. Hence if $\xi \in \widehat{\mathcal{F}}(R)$ is a versal formal object, then the composition

$\underline{R}|_{\mathcal{C}_\Lambda } \longrightarrow \mathcal{F} \longrightarrow \overline{\mathcal{F}}$

is smooth (Lemma 90.8.7) and we conclude that the image $\overline{\xi }$ of $\xi$ in $\overline{\mathcal{F}}$ is a versal formal object. If (90.15.0.1) holds, then $\overline{\xi }$ induces an isomorphism $T\underline{R}|_{\mathcal{C}_\Lambda } \to T\overline{\mathcal{F}}$ because $\mathcal{F} \to \overline{\mathcal{F}}$ identifies tangent spaces. Hence in this case $\overline{\xi }$ is a hull for $\overline{\mathcal{F}}$, see Remark 90.15.6. By Theorem 90.15.5 we can always find such a $\xi$ if $k' \subset k$ is separable and $\mathcal{F}$ is a predeformation category satisfying (S1), (S2), and $\dim _ k T\mathcal{F} < \infty$.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).