Remark 90.15.7. Let \mathcal{F} be a predeformation category. Recall that \mathcal{F} \to \overline{\mathcal{F}} is smooth, see Remark 90.8.5. Hence if \xi \in \widehat{\mathcal{F}}(R) is a versal formal object, then the composition
is smooth (Lemma 90.8.7) and we conclude that the image \overline{\xi } of \xi in \overline{\mathcal{F}} is a versal formal object. If (90.15.0.1) holds, then \overline{\xi } induces an isomorphism T\underline{R}|_{\mathcal{C}_\Lambda } \to T\overline{\mathcal{F}} because \mathcal{F} \to \overline{\mathcal{F}} identifies tangent spaces. Hence in this case \overline{\xi } is a hull for \overline{\mathcal{F}}, see Remark 90.15.6. By Theorem 90.15.5 we can always find such a \xi if k' \subset k is separable and \mathcal{F} is a predeformation category satisfying (S1), (S2), and \dim _ k T\mathcal{F} < \infty .
Comments (0)