The Stacks project

90.17 Lifts of objects

The content of this section is that the tangent space has a principal homogeneous action on the set of lifts along a small extension in the case of a deformation category.

Definition 90.17.1. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal{C}_\Lambda $. Let $f: A' \to A$ be a map in $\mathcal{C}_\Lambda $. Let $x \in \mathcal{F}(A)$. The category $\textit{Lift}(x, f)$ of lifts of $x$ along $f$ is the category with the following objects and morphisms.

  1. Objects: A lift of $x$ along $f$ is a morphism $x' \to x$ lying over $f$.

  2. Morphisms: A morphism of lifts from $a_1 : x'_1 \to x$ to $a_2 : x'_2 \to x$ is a morphism $b : x'_1 \to x'_2$ in $\mathcal{F}(A')$ such that $a_2 = a_1 \circ b$.

The set $\text{Lift}(x, f)$ of lifts of $x$ along $f$ is the set of isomorphism classes of $\textit{Lift}(x, f)$.

Remark 90.17.2. When the map $f: A' \to A$ is clear from the context, we may write $\textit{Lift}(x, A')$ and $\text{Lift}(x, A')$ in place of $\textit{Lift}(x, f)$ and $\text{Lift}(x, f)$.

Remark 90.17.3. Let $\mathcal{F}$ be a category cofibred in groupoids over $\mathcal{C}_\Lambda $. Let $x_0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(k))$. Let $V$ be a finite dimensional vector space. Then $\text{Lift}(x_0, k[V])$ is the set of isomorphism classes of $\mathcal{F}_{x_0}(k[V])$ where $\mathcal{F}_{x_0}$ is the predeformation category of objects in $\mathcal{F}$ lying over $x_0$, see Remark 90.6.4. Hence if $\mathcal{F}$ satisfies (S2), then so does $\mathcal{F}_{x_0}$ (see Lemma 90.10.6) and by Lemma 90.12.2 we see that

\[ \text{Lift}(x_0, k[V]) = T\mathcal{F}_{x_0} \otimes _ k V \]

as $k$-vector spaces.

Remark 90.17.4. Let $\mathcal{F}$ be a category cofibered in groupoids over $\mathcal C_\Lambda $ satisfying (RS). Let

\[ \xymatrix{ A_1 \times _ A A_2 \ar[r] \ar[d] & A_2 \ar[d] \\ A_1 \ar[r] & A } \]

be a fibre square in $\mathcal{C}_\Lambda $ such that either $A_1 \to A$ or $A_2 \to A$ is surjective. Let $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(A))$. Given lifts $x_1 \to x$ and $x_2 \to x$ of $x$ to $A_1$ and $A_2$, we get by (RS) a lift $x_1 \times _ x x_2 \to x$ of $x$ to $A_1 \times _ A A_2$. Conversely, by Lemma 90.16.2 any lift of $x$ to $A_1 \times _ A A_2$ is of this form. Hence a bijection

\[ \text{Lift}(x, A_1) \times \text{Lift}(x, A_2) \longrightarrow \text{Lift}(x, A_1 \times _ A A_2). \]

Similarly, if $x_1 \to x$ is a fixed lifting of $x$ to $A_1$, then there is a bijection

\[ \text{Lift}(x_1, A_1 \times _ A A_2) \longrightarrow \text{Lift}(x, A_2). \]

Now let

\[ \xymatrix{ A_1' \times _ A A_2 \ar[r] \ar[d] & A_1 \times _ A A_2 \ar[r] \ar[d] & A_2 \ar[d] \\ A_1' \ar[r] & A_1 \ar[r] & A } \]

be a composition of fibre squares in $\mathcal{C}_\Lambda $ with both $A'_1 \to A_1$ and $A_1 \to A$ surjective. Let $x_1 \to x$ be a morphism lying over $A_1 \to A$. Then by the above we have bijections

\begin{align*} \text{Lift}(x_1, A_1' \times _ A A_2) & = \text{Lift}(x_1, A_1') \times \text{Lift}(x_1, A_1 \times _ A A_2) \\ & = \text{Lift}(x_1, A_1') \times \text{Lift}(x, A_2). \end{align*}

Lemma 90.17.5. Let $\mathcal{F}$ be a deformation category. Let $A' \to A$ be a surjective ring map in $\mathcal{C}_\Lambda $ whose kernel $I$ is annihilated by $\mathfrak m_{A'}$. Let $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(A))$. If $\text{Lift}(x, A')$ is nonempty, then there is a free and transitive action of $T\mathcal{F} \otimes _ k I$ on $\text{Lift}(x, A')$.

Proof. Consider the ring map $g : A' \times _ A A' \to k[I]$ defined by the rule $g(a_1, a_2) = \overline{a_1} \oplus a_2 - a_1$ (compare with Lemma 90.10.8). There is an isomorphism

\[ A' \times _ A A' \xrightarrow {\sim } A' \times _ k k[I] \]

given by $(a_1, a_2) \mapsto (a_1, g(a_1, a_2))$. This isomorphism commutes with the projections to $A'$ on the first factor, and hence with the projections of $A' \times _ A A'$ and $A' \times _ k k[I]$ to $A$. Thus there is a bijection
\begin{equation} \label{formal-defos-equation-one} \text{Lift}(x, A' \times _ A A') \longrightarrow \text{Lift}(x, A' \times _ k k[I]) \end{equation}

By Remark 90.17.4 there is a bijection
\begin{equation} \label{formal-defos-equation-two} \text{Lift}(x, A') \times \text{Lift}(x, A') \longrightarrow \text{Lift}(x, A' \times _ A A') \end{equation}

There is a commutative diagram

\[ \xymatrix{ A' \times _ k k[I] \ar[r] \ar[d] & A \times _ k k[I] \ar[r] \ar[d] & k[I] \ar[d] \\ A' \ar[r] & A \ar[r] & k. } \]

Thus if we choose a pushforward $x \to x_0$ of $x$ along $A \to k$, we obtain by the end of Remark 90.17.4 a bijection
\begin{equation} \label{formal-defos-equation-three} \text{Lift}(x, A' \times _ k k[I]) \longrightarrow \text{Lift}(x, A') \times \text{Lift}(x_0, k[I]) \end{equation}

Composing (, (, and ( we get a bijection

\[ \Phi : \text{Lift}(x, A') \times \text{Lift}(x, A') \longrightarrow \text{Lift}(x, A') \times \text{Lift}(x_0, k[I]). \]

This bijection commutes with the projections on the first factors. By Remark 90.17.3 we see that $\text{Lift}(x_0, k[I]) = T\mathcal{F} \otimes _ k I$. If $\text{pr}_2$ is the second projection of $\text{Lift}(x, A') \times \text{Lift}(x, A')$, then we get a map

\[ a = \text{pr}_2 \circ \Phi ^{-1} : \text{Lift}(x, A') \times (T\mathcal{F} \otimes _ k I) \longrightarrow \text{Lift}(x, A'). \]

Unwinding all the above we see that $a(x' \to x, \theta )$ is the unique lift $x'' \to x$ such that $g_*(x', x'') = \theta $ in $\text{Lift}(x_0, k[I]) = T\mathcal{F} \otimes _ k I$. To see this is an action of $T\mathcal{F} \otimes _ k I$ on $\text{Lift}(x, A')$ we have to show the following: if $x', x'', x'''$ are lifts of $x$ and $g_*(x', x'') = \theta $, $g_*(x'', x''') = \theta '$, then $g_*(x', x''') = \theta + \theta '$. This follows from the commutative diagram

\[ \xymatrix{ A' \times _ A A' \times _ A A' \ar[rrrrr]_-{(a_1, a_2, a_3) \mapsto (g(a_1, a_2), g(a_2, a_3))} \ar[rrrrrd]_{(a_1, a_2, a_3) \mapsto g(a_1, a_3)} & & & & & k[I] \times _ k k[I] = k[I \times I] \ar[d]^{+} \\ & & & & & k[I] } \]

The action is free and transitive because $\Phi $ is bijective. $\square$

Remark 90.17.6. The action of Lemma 90.17.5 is functorial. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of deformation categories. Let $A' \to A$ be a surjective ring map whose kernel $I$ is annihilated by $\mathfrak m_{A'}$. Let $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{F}(A))$. In this situation $\varphi $ induces the vertical arrows in the following commutative diagram

\[ \xymatrix{ \text{Lift}(x, A') \times (T\mathcal{F} \otimes _ k I) \ar[d]_{(\varphi , d\varphi \otimes \text{id}_ I)} \ar[r] & \text{Lift}(x, A') \ar[d]^\varphi \\ \text{Lift}(\varphi (x), A') \times (T\mathcal{G} \otimes _ k I) \ar[r] & \text{Lift}(\varphi (x), A') } \]

The commutativity follows as each of the maps (, (, and ( of the proof of Lemma 90.17.5 gives rise to a similar commutative diagram.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06JD. Beware of the difference between the letter 'O' and the digit '0'.