Remark 90.19.3. Up to canonical isomorphism $\text{Inf}_{x_0}(\mathcal{F})$ does not depend on the choice of pushforward $x_0 \to x_0'$ because any two pushforwards are canonically isomorphic. Moreover, if $y_0 \in \mathcal{F}(k)$ and $x_0 \cong y_0$ in $\mathcal{F}(k)$, then $\text{Inf}_{x_0}(\mathcal{F}) \cong \text{Inf}_{y_0}(\mathcal{F})$ where the isomorphism depends (only) on the choice of an isomorphism $x_0 \to y_0$. In particular, $\text{Aut}_ k(x_0)$ acts on $\text{Inf}_{x_0}(\mathcal{F})$.
Comments (0)